TYPES OF BONDS

	Ionic	Polar Covalent	Nonpolar Covalent
Types of elements	Metal + nonmetal	Two different nonmetals	Two identical nonmetals
Electronegativity difference	Greater than 1.7	Greater than 0 but less than 1.7	Equal to 0
What happens to electrons	Transferred from the metal to the nonmetal	Shared unequally between the atoms	Shared equally between the atoms
How do you indicate what has occurred?	Formation of a cation and an anion	Indicate unequal sharing with partial charges $\delta-=$ higher Eneg $\delta+=$ lower Eneg	No charges or partial charges required

Polar covalent bond

Bonding electrons shared unequally between two atoms. Partial charges on atoms.
(a)

Nonpolar covalent bond

Bonding electrons shared equally between two atoms. No charges on atoms.

Complete transfer of one or more valence electrons. Full charges on resulting ions.

TYPES OF MOLECULES

Polar Molecule

Occurs when there is an asymmetrical distribution of charge
Bent (ex. $\mathrm{H}_{2} \mathrm{O}$) and pyramidal (ex. NH_{3}) shapes are always polar
Tetrahedral and linear molecules may be polar if the charges are not symmetrical about the central atom

Nonpolar Molecule

Occurs when the bond is nonpolar
OR
When the polar bonds are symmetrically distributed around the central atom in a tetrahedral or linear molecule

$\mathrm{CH}_{3} \mathrm{Cl}$ is a tetrahedral molecule. The bonds between $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Cl}$ are all polar. However, the $\mathrm{C}-\mathrm{Cl}$ bond is more polar and therefore there is an unequal distribution of charge.

HCN is a linear molecule. The bonds between C-H and CN are both polar. However, nitrogen has a higher electronegativity and the C-N bond is more polar and therefore there is an asymmetrical distribution of charge
CH_{4} is a tetrahedral molecule. The bonds between C-H are all polar. These polar bonds are symmetrically distributed around the central carbon and the molecule is nonpolar.

CO_{2} is a linear molecule. The bonds between $\mathrm{C}-\mathrm{O}$ are polar. These polar bonds are symmetrically distributed around the central atom and the molecule is nonpolar (NO POLES.)

