TYPES OF BONDS

	Ionic	Polar Covalent	Nonpolar Covalent]
Types of elements	Metal + nonmetal	Two different	Two identical	
		nonmetals	nonmetals	
Electronegativity	Greater than 1.7	Greater than 0 but less	Equal to 0	
difference		than 1.7		
What happens to	Transferred from the	Shared unequally	Shared equally	
electrons	metal to the nonmetal	between the atoms	between the atoms	(
How do you indicate	Formation of a cation	Indicate unequal	No charges or partial]
what has occurred?	and an anion	sharing with partial	charges required	
		charges		
		δ - = higher Eneg		
		$\delta + =$ lower Eneg		B

Nonpolar covalent bond Bonding electrons shared equally between two atoms. No charges on atoms.

δ+

TYPES OF MOLECULES

Polar Molecule		Nonpolar Molecule	
Occurs when there is an asymmetrical distribution of charge		Occurs when the bond is nonpolar	
Bent (ex. H_2O) and pyramidal (ex. NH_3) shapes are always polar		OR When the polar bonds are symmetrically distributed around the central atom in a tetrahedral or linear molecule	
Tetrahedral and linear molecules may be polar if the charges are not symmetrical about the central atom			
	CH ₃ Cl is a tetrahedral molecule. The bonds between C-H and C-Cl are all polar. However, the C-Cl bond is more polar and therefore there is an unequal distribution of charge.	CH ₄ is a tetrahedral molecule. The bonds between C-H are all polar. These polar bonds are symmetrically distributed around the central carbon and the molecule is nonpolar.	
	HCN is a linear molecule. The bonds between C-H and C- N are both polar. However, nitrogen has a higher electronegativity and the C-N bond is more polar and therefore there is an asymmetrical distribution of charge	CO ₂ is a linear molecule. The bonds between C-O are polar. These polar bonds are symmetrically distributed around the central atom and the molecule is nonpolar (NO POLES.)	