Unit 1: Getting Ready for Chemistry

If you can do all the things listed below, you are ready for the Unit 1 test.

	5 important lab safety rules are:
	2.
1. I can list five important lab safety rules.	3.
	4.
	5.
2. I can identify the most common laboratory tools such as: beaker, graduated cylinder, Erlenmeyer flask, scoop, beaker tongs, test tube, test tube rack, test tube holder, crucible tongs, Bunsen burner, striker, stirring rod, funnel, dropper pipette (aka eye dropper)	Draw and label as many of the common laboratory tools as you can!
	A farmer wants to know what the effect the amount of fertilizer has on the amount of fruit an apple tree produces.
3. I can determine the independent	What is the independent variable?
variable in a lab experiment.	What is the dependent variable?
4. I can determine the	How many significant figures are there in 30.50 cm?
number of significant figures in a measurement.	How many significant figures are there in 400.0 sec?
5. I can determine the	To the correct number of significant figures, what is the answer to 5.93 mL + 4.6 mL?
answer to a math problem to the correct number of significant figures.	To the correct number of significant figures, what is the answer to 5.93 cm * 4.6 cm?

6. I can read the meniscus on a graduated cylinder to the correct number of significant figures.	MENISCUS 70 mL 100 mL GRADUATED CYLINDER The volume is mL.		
7. I can use dimensional analysis to solve math problems.	To the correct number of significant figures, determine how many meters there are in 15.4 ft. To the correct number of significant figures, determine how many minutes there are in 2.7 years.		
8. I can convert numbers into scientific notation from standard notation.	Convert 87,394,000,000,000 to scientific notation. Convert 0.0000040934 to scientific notation.		
9. I can convert numbers into standard notation from scientific notation.	Convert 5.8×10^9 to standard notation. Convert 4.3×10^{-5} to standard notation.		
10. I can use my calculator to input numbers in scientific notation using the "2 nd function & EE keys.	Enter the number 5.67 x 10^{52} on your calculator and show Mrs. S. She'll initial this box, if you've done it correctly!		
11. I can convert between different metric units by using "King Henry died by drinking chocolate milk".	9.3 km = ? m 39,983 mL = ?kL		
12. I can convert between different metric units by using Reference Table C and dimensional analysis.	$1.5 \times 10^{-3} \text{ km} = ? \mu\text{m}$ $4.67 \times 10^{13} \text{ pm} = ?\text{dm}$		

13. I can determine which equation to use from Reference Table T by looking at the given information.	Which equation would you use to solve the following problem? (Don't solve it. Just tell me WHICH equation to use.) Problem: How many grams of LiBr (gram-formula mass = 87 g/mol) would 3.5 moles of LiBr be?		
14. I can solve for "x" when it's in the denominator of a fraction.	What is the volume, in cm 3 , of 54.6 g of beryllium (density = 1.85 g/cm 3)		
15. I can convert ^O C to degrees kelvin and degrees kelvin to ^O C.	What kelvin temperature is equal to 200°C? What Celsius temperature is equal to 200K?		
16. Given the symbol I can write the name for any element in Group 1, Group 2, Group 13, Group 14, Group 15, Group 16, Group 17 or Group 18 without using a Periodic Table.	Al		
17. Given the symbol or the name, I can determine the Group for any element in Group 1, Group 2, Group 13, Group 14, Group 15, Group 16, Group 17 or Group 18 without using a Periodic Table.	AI Ca Ne N Na S Br Ge		
18. I can define gramformula mass (AKA molar mass).	<u>Definition:</u>		

	How many moles of atoms are in N_2 ?
19.Given the chemical symbol/formula, I can determine	What is the total # of moles of atoms in $Pb(C_2H_3O_2)_2$?
how many atoms are present.	How many moles of C atoms are in $Pb(C_2H_3O_2)_2$?
	What is the gfm for N_2 ?
20. I can determine the gram-formula mass for any element or compound.	What is the gfm for $Pb(C_2H_3O_2)_2$?
21. I can define a mole as it pertains to chemistry.	Definition:
22. I can find the number of	94.3 g is how many moles of NaCl?
moles of substance if I am given the mass and formula for the substance.	
23. I can determine the percent composition of an element in a compound.	What is the percent by mass of Mg in $Mg(NO_3)_2$?
24. I can convert between moles and numbers of particles using Avogadro's number?	How many moles of carbon atoms are there in 4.8 x 10^{24} atoms of C?
25. I can convert between moles and L (assuming STP).	How many L does 4.60 moles of ${\rm O}_2$ occupy assuming STP?

Unit 2: Introduction to Matter

If you can do all the things listed below, you are ready for the Unit 2 test. $\,$

1. I can still do everything		
from Unit 1.		
	<u>Definitions:</u> atom	
	element	
2. I can define the following: atom, element, compound, mixture	compound	
	mixture	
	2 Atoms of 1 Element	2 Molecule of 1 Compound
3. I can draw particle diagrams to represent an atom, an element, a molecule, a compound, a mixture	Mixture of 2 elements	Mixture of 2 compounds
	Mixture of an eleme	nt and a compound

	Put each of the following examples into the correct column.			
	Examples: C ₁₂ H ₂₂ O ₁₁ , NaCl, Fe, salt water, air, CO ₂ , H ₂ , Ar, soda			
4. I can classify substances as a pure substance (element or compound) or as a mixture.	<u>Element</u>	<u>Compound</u>	<u>Mixture</u>	
5. I can define homogeneous mixture and heterogeneous mixture in terms of particle distribution.	Definitions: homogeneous mixture heterogeneous mixture			
6. I can give an example of homogeneous and heterogeneous mixtures.	Two examples of homogeneous mixtures: a. b. Two examples of heterogeneous mixtures: a. b.			
7. I can classify a property as physical or chemical.	Write "P" for physical or "C" for chemical on the line provided. copper (II) sulfate is blue. copper reacts with oxygen. copper can be made into wire. copper has a density of 8.96 g/cm ³ . copper melts at 1358K. copper reacts with nitric acid. copper doesn't dissolve in water.			

	Write "P" for physical or "C" for chemical on the line provided.			
8. I can classify a change as	copper (II) sulfate dissolves in water.			
	copper reacts with oxygen to form solid copper (I) oxide.			
	solid copper is melted.			
physical or chemical.	a chunk of copper is pounded flat.			
	copper and zinc are mixed to form brass.			
	a large piece of copper is chopped in half.			
	copper reacts with bromine to form copper (II) bromide.			
	Substance A			
9. In a particle diagram, I can distinguish between a physical	Circle the particle diagram that best represents Substance A after a physical change has occurred.			
change and a chemical change.				
	Definitions: solute			
10. I can define: solute, solvent, solution, and solubility.	solvent			
	solution			
	solubility			
11. I can describe the trend	As the temperature increases, the solubility of a solid			
in solubility for solids as the temperature changes.				

12. I can describe the trend in solubility for gases as the temperature changes.	As the temperature increases, the solubility of a gas		
13. I can use Reference Table F to determine if a substance will	Write "S" for soluble and "NS" for not soluble . Use Reference Table F to determine the solubility of the following compounds: potassium chlorate		
be soluble in water.	silver bromidelithium carbonate calcium carbonate		
14. I can use Table G to			
determine how much solute to add at a given temperature to make a saturated solution.	How many grams of $KClO_3$ must be dissolved in 100 grams of water at $20^{\rm O}C$ to make a saturated solution?		
15. I can use Table G to	If 20.0 g of NaNO ₃ are dissolved in 100.0 g of water at 25.0 $^{\circ}$ C, will the		
determine if a solution is saturated, unsaturated, or supersatured.	resulting solution be saturated, unsaturated, or supersaturated?		
16. I can define: dilute, concentrated, concentration, and electrolyte.	Definitions: dilute concentrated concentration electrolyte		
Which solution is most concentrated? A) 125.0 g of KI dissolved in 100.0 g of water at 10° C B) 70.0 g of NH ₄ Cl dissolved in 100.0 g of water at 70° C C) 120.0 g of KNO ₃ dissolved in 100.0 g of water at 70° C D) 30.0 g of SO ₂ dissolved in 100.0 g of water at 90° C			
18. I can use Reference Table T to calculate the concentration of a solution in ppm.	What is the concentration, in ppm, of a 2600 g of solution containing 0.015 g of CO_2 ?		
19. I can use Reference Table T to calculate the concentration of a solution in molarity.	What is the molarity of 3.5 moles of NaBr dissolved in 500 mL of water?		

20. I can determine how matter will be separated using filtration.	When a mixture of sand, salt, sugar, and water is filtered, what passes through the filter?		
21. I can describe how matter can be separated using distillation.	Which physical property makes it possible to separate the components of crude oil by means of distillation?		
23. I can state which separation process (decanting, filtering, distilling, chromatography, or evaporating) is best for a given situation.	To separate a mixture of salt and water, the best method of separation would be To separate a mixture of ethanol and water, the best method of separation would be To separate a mixture of food coloring dyes, the best method of separation would be To separate a mixture of oil and water, the best method of separation would be		
24. I can define allotrope.	Defintion: allotrope		
25. I can state the differences between two allotropes of the same element.	Two allotropes of the same element have different molecular structures and therefore have different and properties.		

Unit 3: Matter & Energy

If you can do all the things listed below, you are ready for the Unit 3 test.

1. I can still do everything from Unit 1.			
2. I can still do everything from Unit 2.			
3. I can define kinetic energy, potential energy, temperature, heat, endothermic, and exothermic.	Defintions: kinetic energy		
	potential energy		
	temperature		
	heat		
	endothermic		
	exothermic		
	Draw a particle diagram to	represent atoms of Li in e	ach phase.
4. I can use particle diagrams	Solid	Liquid	Gas
to show the arrangement and spacing of atoms/molecules in different phases.			

		Solid	Liquid	Gas	
5. I can compare solids, liquids, and gases in terms of their relative kinetic energy, type of molecular motion, ability to	Relative Kinetic Energy				
	Type of Molecular Motion	vibrations, only	vibration and rotation	vibration, rotation, and translation	
completely fill a container, ability to change shape.	Ability to Completely Fill a Container				
	Ability to Change Shape				
	During fusion a sub	ostance changes fror	n t		
	During solidificatio	n a substance chang	es from	to	
	During condensation	on a substance chan	ges from	to	
6. I can state the change of	During vaporization a substance changes from to to				
phase occurring in fusion, solidification, condensation, vaporization, melting, boiling,	During melting a substance changes from to to				
sublimation, deposition, and freezing.	During boiling a substance changes from to				
	During sublimation	n a substance change	es from	to	
	During deposition	a substance changes	from	to	
	During freezing a s	ubstance changes fr	om	_to	
	endothermic.	ange listed, indicate	•	is exothermic or	
7. I can indicate if a phase	solidification/freezing				
change is exothermic or endothermic.	condensation				
	vaporization/boiling sublimation				

8. Given a heating/cooling curve, I can determine the temperature at which a substance freezes/melts or condenses/vaporizes.	Time (minutes) What is the freezing point of this substance? What is the boiling point of this substance?
9. Given a heating/cooling curve, I can determine which sections of the curve show changes in potential energy.	On the graph, circle the sections that show a change in potential energy.
10. Given a heating/cooling curve, I can determine which sections of the curve show changes in kinetic energy.	On the graph, circle the sections that show a change in kinetic energy.
11. I can state the temperature at which water freezes in ^O C and K.	What is the freezing point of water in ^O C and K?
12. I can state the temperature at which water melts in ^O C and K.	What is the melting point of water in ^O C and K?
13. I can state the temperature at which water vaporizes/boils in ^O C and K.	What is the boiling point of water in ^O C and K?
14. I can state the temperature at which water condenses in ^O C and K.	What is the condensing point of water in ^O C and K?

	Which heat equation should be used in each of the following:
	a. How much heat is needed to vaporize 100.0 g of water at 100°C?
15. I can use Reference Table T to determine which "heat" equation is needed for a given problem.	b. How much heat is needed to raise the temperature of 100.0 g of water by 35°C? c. How much heat is needed to melt 100.0 g of ice at 0°C?
	Definitions: specific heat capacity
16. I can define specific heat capacity, heat of fusion, heat of vaporization.	heat of fusion
	heat of vaporization
	How many grams of water can be heated by 15.0 °C using 13,500 J of heat?
17. I can use the "heat" equations to solve for any variable, if I am given the other variables.	It takes 5210 J of heat to melt 50.0 g of ethanol at its melting point. What is the heat of fusion of ethanol?
	The five parts of the Kinetic Molecular Theory are: a.
	b.
18. I can state the 5 parts of the Kinetic Molecular Theory.	c.
	d.
	e.

19. I can define an ideal gas.	<u>Definition:</u> ideal gas
20. I can state the conditions of pressure and temperature under which a gas will act "ideally".	A gas will act most "ideally" under the conditions of pressure and temperature.
21. I can state the two elements that act ideally most of the time.	The two elements that act ideally most of the time are & &
22. I can explain how pressure is created by a gas.	What causes gas molecules to create pressure?
23. I can state the relationship between pressure and volume for gases (assuming constant temperature).	At constant temperature, as the pressure on a gas increases, the volume
24. I can state the relationship between temperature and volume for gases (assuming constant pressure).	At constant pressure, as the temperature on a gas increases, the volume
25. I can state the relationship between temperature and pressure for gases (assuming constant volume).	In a fixed container (AKA "has constant volume), as the temperature on a gas increases, the pressure
26. I can state Avogadro's Hypothesis.	Avogadro's Hypothesis says
27. I can remember to convert ^O C to K when using the Combined Gas Law to determine changes in V, P, or T of a gas.	A gas originally occupies 2.3L at 56°C and 101.3 kPa. What will its volume be at 100°C and 105.7 kPa?

28. I can define boiling point and vapor pressure.	Definition: boiling point vapor pressure
29. I can state the condition of pressure that is used for "normal" boiling points.	The normal boiling point of a substance occurs at a pressure ofatm/kPa.
30. I can state the relationship between atmospheric pressure and boiling point.	As the atmospheric pressure increases, the boiling point

Unit 4: Atomic Theory

If you can do all the things listed below, you are ready for the Unit 4 test.

1. I can still do everything from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	Dalton's Model:
4. I can describe John Dalton's contribution to our understanding of the atom.	What it looked like:
	Thomson's Experiment:
5. I can describe JJ Thomson's contribution to our	Thomson's Model:
understanding of the atom.	What it looked like:
	Rutherford's Experiment:
6. I can describe Ernest Rutherford's contribution to our	Rutherford's Model:
understanding of the atom.	What it looked like:
	Bohr's Model:
7. I can describe Niels Bohr's contribution to our understanding of the atom.	What it looked like:

8. I can describe James Chadwick's contribution to our understanding of the atom.	What subatomic particle did Chadwick discover?			
	What does the modern model of the atom look like?			
9. I can describe how Schrodinger, Heisenberg, Pauli, Dirac, and others contributed to our understanding of the atom.	Where, in an atom, are electrons likely to be found according to the modern model?			
10. I can state the chronological order of atomic models.	From oldest to new			
		Particle #1	Particle #2	Particle #3
11 Lean state the three	Name			
11. I can state the three subatomic particles, their location in an atom, their charges, and their	Charge			
masses (in amu).	Mass			
	Location in Atom			
12. I can explain why atoms are electrically neutral.	Atoms are electrical	•	he number of	is
	Definitions:		·	
	mass number			
13. I can define mass number and atomic number.	atomic number			
	In an atom of ²¹² Pc	o, how many proton	s are present?	
14. Given the mass number, I can determine the number of protons, neutron, and electrons in an atom.	In an atom of ²¹² Po 84 In an atom of ²¹² Po	o, how many electro	ns are present?	
	84	, itali iliani, iloadio	ш. ш р. осони	

	How many protons are in an atom of selenium?
15. I can use the Periodic Table to determine the atomic number of an element.	How many protons are in an atom of silicon?
16. I can define isotope.	<u>Definition:</u> isotope
17. I can represent an atom in any of the four methods of isotopic notation.	Write the four different methods of isotopic notation for an atom of bromine that has 45 neutrons. Method 1 Method 2 Method 3 Method 4
18. I can calculate average atomic mass given the masses of the naturally occurring isotopes and the percent abundances.	Element Q has two isotopes. If 77% of the element has an isotopic mass of 83.7 amu and 23% of the element has an isotopic mass of 89.3 amu, what is the average atomic mass of the element?
19. I can define ion, cation, and anion.	Definitions: ion cation anion
20. Given the mass number and the charge, I can determine the number of protons, neutrons, and electrons in an ion.	How many protons are in $^{19}F^{1-}$? How many neutrons are in $^{19}F^{1-}$? 9 How many electrons are in $^{19}F^{1-}$?

	Definitions: principal energy level (PEL)
	orbital
21. I can define principal	ground state
energy level, orbital, ground state, excited state, electron configuration, and bright line spectrum.	excited state
	electron configuration
	bright line spectrum
	PEL1 holds a maximum of electrons.
22. I can state the maximum	PEL2 holds a maximum of electrons.
number of electrons that will fit into each of the first four principal energy levels.	PEL3 holds a maximum of electrons.
	PEL4 holds a maximum of electrons.
23. I can state the relationship between distance	As the distance between the nucleus and the electron increases, the energy of
from the nucleus and energy of an electron.	the electron
24. I can state the relationship between the number	As the number of the PEL increases, the distance to the nucleus
of the principal energy level and the distance to the atom's nucleus.	
	A brightline spectrum is created when
25. I can explain, in terms of subatomic particles and energy states, how a bright line spectrum is created.	

	Bright-Line Spectra
	Element D
	Element E
	Element G
26. I can identify the elements shown in a bright line	Mixture
spectrum.	750 nm 360 nm
	Which element(s) is/are present in the mixture?
	which element(s) is, are present in the mixture.
	Definition: valence electron
27. I can define valence electrons.	valence electron
elections.	
	How many valence electrons does an atom of rubidium have in the ground
28. I can locate and interpret	state?
an element's electron configuration on the Periodic	How many principal energy levels contain electrons in an atom of iodine in the
Table.	ground state?
	Which electron configuration represents an atom of potassium in the excited state?
20 1 11 11	
29. I can identify an electron configuration that shows an atom	A) 2-8-7-1
in the excited state.	B) 2-8-8-1 C) 2-8-7-2
	D) 2-8-8-2
	Draw the Lewis electron dot diagram for the following atoms:
30. I can draw Lewis electron dot diagrams for a given element.	Li Be B C N O F Ne
	Definition:
	octet of valence electrons
31. I can define and state the	The importance of having a complete "octet of valence electrons" is
importance of "octet of valence electrons."	

Unit 5: Nuclear Chemistry

If you can do all the things listed below, you are ready for the Unit 5 test.

1. I can still do everything from Unit 1.							
2. I can still do everything							
from Unit 2.							
3. I can still do everything							
from Unit 3.							
4. I can still do everything							
from Unit 4.							
	Туре	Symbol	Mass #	Charge	Penetrating	Shielding	Bio
	-11				Power	Required	Hazard
	alpha						
	beta						
5. I can compare types of radiation in terms of symbol, mass							
number, charge, penetrating	gamma						
power, shielding required, and	Summa						
biological hazard.	neutron						
	licution						
	positron						
	position						
	The three types of nuclear reactions are:						
	a.						
6. I can identify the three							
types of nuclear reactions.	b.						
	c.						
	Definitions						
	transmutat	lion					
	fission						
7 Landafina	11331011						
7. I can define transmutation, fission, and fusion.							
transmutation, ussion, and rusion.							
	fusion						

8. I can state two synonyms	Two synonyms for spontaneous decay are:			
for spontaneous decay.	and			
9. I can show how mass number and electrical charge must	Complete the following nuclear equation:			
be conserved in any nuclear reaction.	$^{42}_{19}K \rightarrow ^{42}_{20}Ca + \underline{\hspace{2cm}}$			
10. I can explain what makes	The stability of the nucleus is dependent on the to			
a nucleus stable or unstable.	ratio.			
11. I can explain the difference between natural transmutation and artificial transmutation.	The difference between natural transmutation and artificial transmutation is that in natural transmutation anbreaks apart on its own and in artificial transmutation a is made by hitting it with a high energy particle (such as a proton, neutron, or gamma radiation).			
12. I can identify a natural decay reaction from a list of reactions.	Which equation represents a natural decay? A) ${}^9_4\mathrm{Be} + {}^1_1\mathrm{H} \to {}^6_3\mathrm{Li} + {}^4_2\mathrm{He}$ B) ${}^{27}_{13}\mathrm{Al} + {}^4_2\mathrm{He} \to {}^{30}_{15}\mathrm{P} + {}^1_0\mathrm{n}$ C) ${}^{14}_7\mathrm{N} + {}^4_2\mathrm{He} \to {}^{17}_8\mathrm{O} + {}^1_1\mathrm{H}$ D) ${}^{235}_{92}\mathrm{U} \to {}^{231}_{90}\mathrm{Th} + {}^4_2\mathrm{He}$			
13. I can identify an artificial transmutation reaction from a list of reactions.	Which equation represents artificial transmutation? A) ${}^{16}_{7}{\rm N} \rightarrow {}^{16}_{8}{\rm O} + {}^{0}_{-1}{\rm e}$ B) ${}^{14}_{7}{\rm N} + {}^{4}_{2}{\rm He} \rightarrow {}^{17}_{8}{\rm O} + {}^{1}_{1}{\rm H}$ C) ${}^{37}_{19}{\rm K} \rightarrow {}^{37}_{18}{\rm Ar} + {}^{0}_{+1}{\rm e}$ D) ${}^{42}_{19}{\rm K} \rightarrow {}^{42}_{20}{\rm Ca} + {}^{0}_{+1}{\rm e}$			
14. I can identify a fission reaction from a list of reactions.	Which equation represents fission? A) $^{1}_{0}$ n + $^{235}_{92}$ U \rightarrow $^{142}_{56}$ Ba + $^{91}_{36}$ Kr + $^{1}_{36}$ n B) $^{226}_{88}$ Ra \rightarrow $^{222}_{86}$ Rn + $^{4}_{2}$ He C) $^{6}_{3}$ Li + $^{1}_{0}$ n \rightarrow $^{3}_{1}$ H + $^{4}_{2}$ He D) $^{2}_{1}$ H + $^{3}_{1}$ H \rightarrow $^{4}_{2}$ He + $^{1}_{0}$ n			
15. I can identify a fusion reaction from a list of reactions.	Which equation represents fusion? A) 1_0 n + $^{235}_{92}$ U \rightarrow $^{142}_{56}$ Ba + $^{91}_{36}$ Kr + $^{1}_{30}$ n B) $^{226}_{88}$ Ra \rightarrow $^{222}_{86}$ Rn + $^{4}_{2}$ He C) $^{6}_{3}$ Li + $^{1}_{0}$ n \rightarrow $^{3}_{1}$ H + $^{4}_{2}$ He D) $^{2}_{1}$ H + $^{3}_{1}$ H \rightarrow $^{4}_{2}$ He + $^{1}_{0}$ n			

16. I can state the conditions	The temperature and pressure conditions needed for fusion to happen are:
of temperature and pressure that	<u>.</u>
are needed for a fusion reaction to	temperature and pressure
happen.	Nivelent manetisms released OTC manus on army them about its line of
17. I can explain why all nuclear reactions release LOTS more energy than chemical reactions do.	Nuclear reactions release LOTS more energy than chemical reactions do because
	Which of the following equations represent NUCLEAR reactions?
18. Given a list of reactions, I can differentiate a "nuclear" reaction from a "chemical" reaction.	A) $H_2O(g) \to H_2O(\ell)$ B) $C(s) + O_2(g) \to CO_2(g)$ C) ${}_1^2H + {}_1^3H \to {}_2^4He + {}_0^1n$ D) ${}_{92}^{235}U + {}_0^1n \to {}_{56}^{142}Ba + {}_{36}^{91}Kr + 3 {}_0^1n$
	Definition:
19. I can define half-life.	half-life
	Based on Reference Table N, what fraction of a radioactive sample of Au-198
	will remain unchanged after 10.78 days?
20. Given the length of the half-life and the amount of time that has passed, I can determine the amount of radioactive sample.	What was the original mass of a radioactive sample of $K-37$ if the sample decayed to 25.0 g after 4.92 seconds? The half-life of $K-37$ is 1.23 seconds)
21. Given the length of the	A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that
half-life and the amount of radioactive sample, I can determine the amount of time that has passed.	the half-life of Co-60 is 5.271 years, how long did the decay take?
22. Given the amount of time that has passed and the amount of radioactive sample, I can determine the length of the half-life.	What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample remains unchanged after 11.46 days?
	Compared to K-37, the isotope K-42 has
23. Using Table N, I can	A) shorter half-life and the same decay mode
determine the length of half-life	B) shorter half-life and a different decay mode
and/or decay mode for a specific	C) longer half-life and the same decay mode
radioactive isotope.	D) longer half-life and a different decay mode

	Five beneficial uses for radioactive isotopes are:
	a.
	b.
24. I can state 5 beneficial uses for radioactive isotopes.	c.
	d.
	e.
	C-14 is used for
25. I can state the scientific	I-131 is used for
use of 4 specific radioactive isotopes.	U-238 is used for
	Co-60 is used for
	Three risks associated with radioactivity and radioactive isotopes are:
	a.
26. I can state three risks associated with radioactivity and radioactive isotopes.	b.
	c.

Unit 6: Periodic Table

If you can do all the things listed below, you are ready for the Unit 6 test.

1. I can still do everything from Unit 1.					
2. I can still do everything					
from Unit 2.					
3. I can still do everything from Unit 3.					
4. I can still do everything					
from Unit 4.					
5. I can still do everything					
from Unit 5.					
	Classify each of the metalloids (MTLD).	following eleme	nts as metals (N	1), nonmetals (N	IM), or
6. I can classify elements as	B	K	Li	C	Ar
metals, nonmetals, or metalloids based on their placement on the	Sb	H	Fe	Au	S
Periodic Table.	F	Si	Fr	He	Rn
	Ge	Al	As	Bi	I
	Group 1 is called the	9			
7. I can state the group names for elements in groups 1, 2, 17, and 18.	Group 2 is called the				
	Group 18 is called th	ne			
8. I can explain why elements in the same group have similar chemical properties.	Elements in the sam				ise
9. I can explain why the elements in Group 18 don't usually react with other elements.	Elements in Group 1	.8 don't usually	react with other	elements beca	use
10. Lean state the many in a	STP stands for				
10. I can state the meaning of "STP" and the Reference Table on which it can be found.	The values can be fo	ound on Referen	ce Table	·	
11. I can state the	The two elements th	nat are liquids at	STP are:		
names/symbols for the two elements on the Periodic Table		and			
that are liquids at STP.					

	The 11 elements that are gases at STP are:
12. I can state the	
names/symbols of the 11 elements	
that are gases at STP.	
	and
13. I can state how the	The elements on the Periodic Table are arranged by increasing
elements on the Periodic Table are	g
arranged.	
	The seven diatomic elements are:
	The seven diatemine elements are:
14. I can list the 7 diatomic	
elements.	
ciements.	
	Definitions:
	electronegativity
	ciectionegativity
	first ionization energy
	This to the Lation energy
	atomic radius
	atomic radius
15. I can define	
electronegativity, first ionization	
energy, atomic radius, ionic radius,	ionic radius
metallic character, and	ionic radius
activity/reactivity.	
	metallic character
	metallic character
	activity/reactivity
	activity/Teactivity

	As one reads down a group from top to bottom, electronegativity
	because
	bccause
16. I can state the periodic	·
trend for electronegativity and	As one reads across a period from left to right, electronegativity
explain why it occurs.	because
	because
	·
	As one reads down a group from top to bottom, first ionization energy
	because
17. I can state the periodic	
trend for first ionization energy and explain why it occurs.	As one reads across a period from left to right, , first ionization energy
and explain wity it occurs.	because
	·
	As one reads down a group from top to bottom, atomic radius
	As one reads down a group from top to bottom, atomic radius
	because
18. I can state the periodic trend for atomic radius and explain	As one reads across a period from left to right, atomic radius
why it occurs.	As one reads across a period from left to right, atomic radius
•	because
	·
	As one reads down a group from top to bottom, metallic character
	because
19. I can state the periodic	_
trend for metallic character and	As one reads across a period from left to right, metallic character
explain why it occurs.	
	because
20. I can state the trend for	As one reads down a group from top to bottom, the melting points and boiling
melting points and boiling point for METALS as one reads down a	noints for METALS
group.	points for METALS
21. I can state the trend for	As one reads down a group from top to bottom, the melting points and boiling
melting points and boiling point	
for NONMETALS as one reads	points for NONMETALS
down a group.	

22. I can state the trend for	As one reads down a group from top to	bottom, the activity/reactivity of
activity/reactivity for METALS as	METALS	
one reads down a group.		
23. I can state the trend for	As one reads down a group from top to	bottom, the activity/reactivity of
activity/reactivity for NONMETALS	NONMETALS	
as one reads down a group.		
	Metals tend to lose electrons (get oxidiz	zed). This loss of electrons causes
24. I can explain how loss or	cations to be tha	n the original atom.
gaining of electrons affects the		
radius of an element.	Nonmetals tend to gain electrons (get r	educed). This gain of electrons causes
	anions to be than	n the original atom.
	Ten properties of metals are:	
	a.	b.
	С.	d.
25. I can list 10 properties of	e.	f.
metals.		
	g.	h.
	3	
	i.	j.
	Eight properties of non metals are:	
	a.	b.
	c.	d.
26. I can list 8 properties of	c.	u.
nonmetals.	0	f.
	e.	1.
		h
	g.	h.

Unit 7: Acids & Bases

If you can do all the things listed below, you are ready for the Unit 7 test.

1. I can still do everything				
from Unit 12. I can still do everything				
from Unit 2.				
3. I can still do everything				
from Unit 3.				
4. I can still do everything from Unit 4.				
5. I can still do everything				
from Unit 5.				
6. I can still do everything				
from Unit 6.				
		Arrhenius	"Alternate Method" (AKA Bronsted-Lowry)	
			Bronsteu-Lowry)	
	acid			
7. I can use two different				
systems to define acids and bases.				
•				
	base			
	Definition	is:		
	рН			
8. I can define pH, [],	hydronium ion			
hydronium ion, hydroxide ion, and electrolyte.				
electrolyte.	hydroxide	ion		
	electrolyt	e		

9. I can state another name for the hydronium ion.	The hydronium ion is also known as the	·
Tor the flydromain ion.	If the $[H_3O^+]$ is 1×10^{-8} , the pH of the so	olution will be
10. Given the hydronium ion concentration, I can determine the pH.	If the $[H_3O^+]$ is 1×10^{-1} , the pH of the solution of the $[H_3O^+]$ is 1×10^{-14} , the pH of the If the $[H_3O^+]$ is 1×10^{-7} , the pH of the solution is 1×10^{-7} , the pH of the solution is 1×10^{-7} .	olution will be solution will be
11 Passed on pU Loop	If the pH of a solution is 4.5, the solution If the pH of a solution is 7.0, the solution	
11. Based on pH, I can determine if a solution is acidic, basic, or neutral.	If the pH of a solution is 11, the solution	
	If the pH of a solution is 5.7, the solution	n is
13. I can state the	As the H^+ concentration decreases , the	pH
relationship between H ⁺	A .1 .14	
concentration and pH.	As the H ⁺ concentration increases, the p	
14. I can determine the change in pH when the H ⁺ concentration of a solution is changed.	If the H ⁺ concentration is decreased by the pH will increase by	a factor of 100, —- a factor of 1000, —-
	List the chemical names of three commo	
15. I can give examples of the chemical names of common acids and bases.	ACIOS	Bases

	List the chemical formulas of three com	mon acids and three common bases.
	Acids	Bases
16. I can give examples of chemical formulas of common		
acids and bases.		
	Definition: neutralization	
17. I can define		
neutralization.		
	Which of the following equations is a ne	eutralization reaction?
18. I can identify a	A) $6\text{Na} + \text{B}_2\text{O}_3$ > $3\text{Na}_2\text{O} + 2\text{ F}_3$	3
neutralization reaction from a list	B) Mg(OH) ₂ + 2HBr> MgBr ₂	2 + 2HOH
of reactions.	C) $2H_2 + O_2> 2H_2O$	
	D) 2KClO ₃ > 2KCl + 3O ₂	
19. I can state the name of	Which piece of laboratory equipment is	used to carry out a titration?
the laboratory equipment that is used to carry out a titration.		
used to carry out a titration.	Why do scientists do titrations?	
20. I can state the purpose of titration.		
	16.7	2 + 1: 24 EC + 11 OH
	If it requires 56.95 mL of 0.0043 M HNO what is the concentration of the LiOH?	3
21. I can solve for any		
variable in the titration equation from Reference Table T.		
22. I can state the three		
types of substances that are electrolytes.	classes of compounds that are electroly	_, and are three
electivites.	Which indicator is red in a solution that	
	A) bromcresol green	
23. Given the pH, I can	-	
determine the color of acid-base indicators.	B) bromthymol blue	
	C)litmus	
	D) thymol blue	

Unit 8: Redox & Electrochemistry

If you can do all the things listed below, you are ready for the Unit 8 test.

1. I can still do everything from Unit 1.					
2. I can still do everything					
from Unit 2.					
3. I can still do everything					
from Unit 3.					
4. I can still do everything					
from Unit 4.					
5. I can still do everything					
from Unit 5.					
6. I can still do everything					
from Unit 6.					
7. I can still do everything					
from Unit 7.					
	<u>Definitions:</u>				
	oxidation				
	reduction				
8. I can define oxidation,					
reduction, oxidation number, and					
redox reaction	oxidation number				
	redox reaction				
	Assign avidation numb	h a * + a a a a b	of the classes	ata halaw	
9. I can assign oxidation	Assign oxidation numb	ber to each	or the elemen	its below.	
numbers to any element.	02	T;		Si	
	_				
	Assign oxidation numb	bers to eac	n element in t	ne compounds below	<i>'</i> .
10. I can assign oxidation	MacCl Ma		Cl		
numbers to the elements in a	MnCl ₃ : Mn		CI		
compound.			~		
	H ₂ SO ₄ : H		_ S	0	
	Assign oxidation numb	bers to eac	h element in t	he polyatomic ions b	elow.
11. I can assign oxidation	PO ₄ ³ -: P		0		
numbers to the elements in a					
polyatomic ion.	ClO ₃ -: Cl		O		
	0.03.01				-

/	$K^{+} + e^{-}> K$
/	$K^{+} + e^{-} \longrightarrow K$
R)	
	$K + e^{-} \longrightarrow K^{+}$
'	K^{+} > K + e^{-}
D)	K> K ⁺ + e ⁻
12. I can distinguish between	iven the reaction:
an oxidation half-reaction and a reduction half-reaction.	$Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$
reduction nan-reaction.	$\Gamma c(s) + Cu^{-1}(aq) \rightarrow \Gamma c^{-1}(aq) + Cu(s)$
V	Which half-reaction correctly shows the oxidation that
0	ccurs?
A	1) $Fe(s) \to Fe^{2+}(aq) + 2e^{-}$
В	Fe(s) + 2e ⁻ \rightarrow Fe ²⁺ (aq)
	C) $Cu^{2+}(aq) \rightarrow Cu(s) + 2e^{-}$
D	Cu ²⁺ (aq) + 2e ⁻ \rightarrow Cu(s)
	e law of Conservation of Charge states
13. I can state the Law of	
Conservation of Charge.	
Th	e two half-reactions that come from the following equation are:
L1((s) + $Ag+(aq)$ > $Li+(aq)$ + $Ag(s)$
14. I can break a redox ox	idation half-reaction
reaction into its two half-reactions.	
	duction half-reaction
rec	duction nan-reaction

	Given the reaction:
	$-$ Cl ₂ (g) + $-$ Fe ²⁺ (aq)> $-$ _Fe(s) + $-$ _Cl ⁻ (aq)
	When the equation is correctly balanced using smallest whole numbers, the coefficient of Cl ⁻ will be
	A) 1 B) 2 C) 6 D) 7
	Which simple oxidation-reduction reaction is <i>not</i> correctly balanced?
	A) $Sn(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Sn^{2+}(aq)$
15. I can balance a redox	B) $Ni(s) + Sn^{2+}(aq) \rightarrow Sn(s) + Ni^{2+}(aq)$
reaction.	C) $2 \text{ I-(aq)} + \text{Fe}^{3+}(\text{aq}) \rightarrow \text{Fe}^{2+}(\text{aq}) + \text{I}_2(\text{s})$
	D) $2 \text{ I-(aq)} + \text{Hg}^{2+}(\text{aq}) \rightarrow \text{Hg}(\ell) + \text{I}_2(\text{s})$
	Given the balanced equation:
	$3 \text{ Fe}^{3+}(aq) + \text{Al}(s) \rightarrow 3 \text{ Fe}^{2+}(aq) + \text{Al}^{3+}(aq)$
	What is the total number of moles of electrons lost by 2 moles of Al(s)?
	A) 1 mole B) 6 moles
	C) 3 moles D) 9 moles
	Which balanced equation represents a redox reaction?
	A) $AgNO_3(aq) + NaCI(aq) \rightarrow AgCI(s) + NaNO_3(aq)$
	B) $H_2CO_3(aq) \rightarrow H_2O(\ell) + CO_2(g)$
	C) NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H ₂ O(ℓ)
	D) $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
16. I can identify a redox reaction from a list of chemical	
reactions.	Which balanced equation represents a redox reaction?
	A) $PCl_5 \rightarrow PCl_3 + Cl_2$
	B) $KOH + HCl \rightarrow KCl + H_2O$
	C) $LiBr \rightarrow Li^+ + Br^-$
	D) $Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4$
	Which of the following elements is most likely to react?
	A) Cu
17. From a list of given list of	A) Cu B) Al
elements, I can determine which element is most active.	C) Li
	D) Mg

_	The two types of electrochemical cells are:
18. I can state the two types of electrochemical cells.	and
of electrochemical cells.	and
	Voltaic Electrolytic
	Components
19. I can compare the two types of electrochemical cells in	Oxidation occurs at the
terms of: components, location of oxidation, location of reduction, direction of electron flow,	Reduction occurs at the
conversion between electrical and chemical energy, and spontaneity	Electrons flow from
of reaction.	Energy conversion that occurs in this cell
	Is this reaction spontaneous or does it require an outside power source to happen?
20. I can state the purpose of the salt bridge in a voltaic cell.	The purpose of the salt bridge is
21. Given an electrochemical cell, I can predict the direction of electron flow.	The diagram below represents an electrochemical cell. Salt bridge Zn²+(aq) 1.0 M What occurs when the switch is closed? A) Zn is reduced. B) Cu is oxidized. C) Electrons flow from Cu to Zn. D) Electrons flow from Zn to Cu.
22. I can explain, in terms of atoms and ions, the changes in mass that take place at the anode and cathode of an electrochemical cell.	Explain, in terms of atoms and ions, why the mass of the cathode increases during the operation of an electrochemical cell. Explain, in terms of atoms and ions, why the mass of the anode decreases during the operation of an electrochemical cell.

Unit 10: Chemical Reactions

If you can do all the things listed below, you are ready for the Unit 10 test.

1. I can still do everything from Unit 1.		
2. I can still do everything		
from Unit 2.		
3. I can still do everything		
from Unit 3.		
4. I can still do everything		
from Unit 4.		
5. I can still do everything		
from Unit 5.		
6. I can still do everything		
from Unit 6.		
7. I can still do everything		
from Unit 7.		
8. I can still do everything		
from Unit 8.		
	Write the chemical formula for the following compounds:	
9. Given the IUPAC name, I		
can write the chemical formula for	sodium bromide lithium selenide	
binary compounds.		
	iron (III) fluoride vanadium (V) oxide	
	Write the IUPAC name for the following compounds:	
10. Given the chemical		
10. Given the chemical formula, I can write the IUPAC	CrO	
		
formula, I can write the IUPAC	CrO	
formula, I can write the IUPAC	CrO	
formula, I can write the IUPAC name for binary compounds.	CrO	
formula, I can write the IUPAC	CrO MgI_2 Write the chemical formula for the following compounds:	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for	CrO	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I	CrO MgI_2 Write the chemical formula for the following compounds:	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for	CrO MgI_2 Write the chemical formula for the following compounds: calcium oxalate nickel (II) thiosulfate	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds.	MgI ₂ Write the chemical formula for the following compounds: calcium oxalate	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds. 12. Given the chemical	CrO MgI2 Write the chemical formula for the following compounds: calcium oxalate nickel (II) thiosulfate Write the IUPAC name for the following compounds:	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds. 12. Given the chemical formula, I can write the IUPAC	CrO MgI_2 Write the chemical formula for the following compounds: calcium oxalate nickel (II) thiosulfate	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds. 12. Given the chemical	$CrO____________________________________$	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds. 12. Given the chemical formula, I can write the IUPAC	$CrO____________________________________$	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds. 12. Given the chemical formula, I can write the IUPAC	CrO MgI2 Write the chemical formula for the following compounds: calcium oxalate nickel (II) thiosulfate Write the IUPAC name for the following compounds:	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds. 12. Given the chemical formula, I can write the IUPAC name for ternary compounds.	$CrO____________________________________$	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds. 12. Given the chemical formula, I can write the IUPAC name for ternary compounds.	$CrO____________________________________$	
formula, I can write the IUPAC name for binary compounds. 11. Given the IUPAC name, I can write the chemical formula for ternary compounds. 12. Given the chemical formula, I can write the IUPAC name for ternary compounds.	$CrO____________________________________$	

14. I can define empirical formula, molecular formula, and hydrate.	Definitions: empirical formula molecular formula hydrate			
15. Given the empirical formula and the molar mass, I can determine the molecular formula of a compound.	What is the molecular formula of a compound that has the empirical formula of CH and a molar mass of 78 g/mol.			
16. I can use particle diagrams to show conservation of mass in a chemical equation.	Using the symbols shown below, complete the equation below to illustrate conservation of mass. $\bullet = AI$ $\bigcirc = Br$ $2AI + 3Br_2 > 2AIBr_3$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc			
17. I can balance a chemical equation showing conservation of mass using the lowest whole number coefficients.	Balance the following chemical equation using the lowest whole number coefficients. Al_2(SO_4)_3 +Ca(OH)_2>Al(OH)_3 +CaSO_4			
18. Given a partially balanced equation, I can predict the missing reactant or product.	Use the law of conservation of mass to predict the missing product. 2NH ₄ Cl + CaO> 2NH ₃ + + CaCl ₂			
19. Given a list of chemical reactions, I can classify them as being a synthesis reaction, decomposition reaction, single replacement reaction, or double replacement reaction.	Classify the following reactions as synthesis, decomposition, single replacement, or double replacement. A) $Mg + 2AgNO_3 \rightarrow Mg(NO_3)_2 + 2Ag$ B) $2Mg + O_2 \rightarrow 2MgO$ C) $MgCO_3 \rightarrow MgO + CO_2$ D) $MgCl_2 + 2AgNO_3 \rightarrow 2AgCl + Mg(NO_3)_2$			

20. Given a balanced equation, I can state the mole ratios between any of the reactants and/or products.	Given the following balanced equation, state the mole ratios between the requested substances. $ C_3H_8(g) + 5O_2(g)> 3CO_2(g) + 4H_2O(l) $ The mole ratio between C_3H_8 and O_2 isC_3H_8:O_2. The mole ratio between C_3H_8 and CO_2 isC_3H_8:CO_2. The mole ratio between C_3H_8 and H_2O isC_3H_8:H_2O. The mole ratio between CO_2 and O_2 isCO_2:O_2. The mole ratio between CO_2 and CO_2 isCO_2:O_2. The mole ratio between CO_2 and CO_2 isCO_2:O_2.			
21. I can define stoichiometry.	<u>Definition:</u> stoichiometry			
22. Given the number of moles of one of the reactants or products, I can determine the number of moles of another reactant or product that is needed to completely use up the given reactant/product.	Using the equation from question #20, determine how many moles of O_2 are needed to completely react with 7.0 moles of $\mathrm{C}_3\mathrm{H}_8$. Using the equation from question #20, determine how many moles of CO_2 are produced when 7.0 moles of $\mathrm{C}_3\mathrm{H}_8$ completely react.			
23. Given the mass or volume of one of the reactants or products, I can determine the mass or volume of another reactant or product that is needed to completely use up the given reactant/product.	Using the equation from question #20, determine how many liters of ${\rm O}_2$ at STP are needed to react completely with 88.0 g of ${\rm C}_3{\rm H}_8$. Using the equation from question #20, determine how many grams of ${\rm H}_2{\rm O}$ are produced when 88.0 g of ${\rm C}_3{\rm H}_8$ completely react.			

Unit 11: Bonding & IMF

If you can do all the things listed below, you are ready for the Unit 11 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything from Unit 1.	
2. I can still do everything from Unit 2.	
3. I can still do everything from Unit 3.	
4. I can still do everything from Unit 4.	
5. I can still do everything from Unit 5.	
6. I can still do everything from Unit 6.	
7. I can still do everything from Unit 7.	
8. I can still do everything from Unit 8.	
9. I can still do everything from Unit 10.	
10. I can state the three types of chemical bonds.	The three types of chemical bonds are:, and
11. I can state the number of valence electrons that an atom attains to be most stable.	Atoms are most stable when they have valence electrons.
12. I can state the two types of compounds.	The two types of compounds are and
	Definition: ionic bond
13. I can define ionic bond, covalent bond, and metallic bond in terms of the types of elements (metals, nonmetals) from which they are formed.	covalent bond metallic bond

	Definition:			
	In an <u>ionic bond</u> , the valence electrons of th	neare		
14. I can define ionic and	to the	so that each atom		
covalent bonds based on what	attains a stable octet (like noble gases).			
happens to the valence electrons.	In a <u>covalent bond</u> , the valence electrons of the two			
	are so that each noble gases).	ch atom attains a stable octet (like		
45. Language lain TICC on it	TICC stands for			
15. I can explain TICS as it relates to chemical bonding.	It helps me remember what happens to the	e electrons in each type of bond.		
	Explain, in terms of valence electrons, why the bonding in methane (CH_4) is similar to the bonding in water (H_2O).			
	5 (2)			
16. In terms of valence electrons, I can find similarities				
and differences between the	Explain, in terms of valence electrons, why	the bonding in HCl is different than		
bonding in several substances.	that bonding in NaCl.			
	Draw Lewis dot diagrams for the following i	onic compounds.		
17. I can draw a Lewis dot	LiBr	CaCl ₂		
diagram to represent an ionic				
compound.				
	Draw Lewis dot diagrams for the following	molecular substances		
	H ₂ O	CO ₂		
	1120	202		
18. I can draw a Lewis dot				
diagram to represent a molecular				
(covalently bonded) compound.	In	CH		
	I_2	CH ₄		

	In a single covalent bond, electrons are shared.			
19. I can state the number of electrons that are shared in	In a double covalent bond, electrons are shared.			
single and multiple covalent bonds.	In a triple covalent bond, electrons are shared.			
	Lewis dot diagrams for ionic compounds have brackets because			
20. I can explain why the Lewis dot diagrams of ionic	·			
compounds have brackets and the Lewis dot diagrams of molecular compounds do not.	Lewis dot diagrams for molecular compounds do NOT have brackets because			
21. I can state the type of bonding that occurs in the polyatomic ions (Reference Table E) and explain why they have that type of bonding.	Polyatomic ions have bonding because			
	State the type(s) of bonding in the following compounds:			
22. Given the chemical formula for a compound, I can determine the type(s) of bonding	NaClCO			
in the compound.	HgNa ₃ PO ₄ &			
23. I can explain and apply				
the meaning of BARF as is applies	BARF stands for			
to chemical bonding.	This means that when a bond is FORMED, energy is			
	and when a bond is BROKEN, energy is			
	Given the balanced equation:			
	$N + N \longrightarrow N_2$			
	Which statement describes the process represented by this equation?			
	A) A bond is formed as energy is absorbed.			
	B) A bond is formed as energy is released.			
	C) A bond is broken as energy is absorbed. D) A bond is broken as energy is released.			
24. I can explain the				
difference between a polar covalent bond and a nonpolar	Polar covalent bonds are formed whennonmetals share electrons unevenly.			
covalent bond in terms of the	nonnetals share electrons unevenly.			
types of nonmetals involved.	Nonpolar covalent bonds form when			
	nonmetals share electrons evenly.			
25. I can explain how to	The degree of polarity of a covalent bond is determined by the			
determine the degree of polarity of a covalent bond.	between			
	the elements			

26. I can explain why one covalent bond is more or less polar	Explain, in terms of electronegativity difference, why the bond between carbon and oxygen in a carbon dioxide molecule is less polar than the bond between			
than another covalent bond, based	hydrogen and oxygen in a water molecule.			
on electronegativity difference.				
27. I can define symmetrical	Definition:			
and asymmetrical.	symmetrical			
	asymmetrical			
28. I can state, in order, the three questions that are asked to determine if a MOLECULE is polar	When determining if a MOLECULE is polar or non-polar, the first question to ask is			
or nonpolar.	usk is			
	When determining if a MOLECULE is polar or non-polar, the second question to			
	ask is			
	When determining if a MOLECULE is polar or non-polar, the third question to			
	ask is			
29. I can explain and apply the meaning of SNAP as it applies	SNAP means			
to determining molecule polarity.	Why is a molecule of CH_4 nonpolar even though the bonds between the carbon and hydrogen are polar?			
	A) The shape of the CH_4 molecule is symmetrical.			
	B) The shape of the CH_4 molecule is asymmetrical.			
	C) The CH ₄ molecule has an excess of electrons.			
	D) The CH ₄ molecule has a deficiency of electrons.			
	Explain, in terms of charge distribution, why a molecule of water ($\rm H_2O$) is polar.			

30. I can determine if a molecular is polar or nonpolar.	Determine which molecules are polar and which are nonpolar. Justify your answer.		
	H ₂ O	CO ₂	
	1120	CO ₂	
		CV.	
	I_2	CH ₄	
31. I can explain and apply the expression "like dissolves like" and give an example.	"Like dissolves like" means		
	An example of "like dissolving like" is		
	All example of like dissolving like is		
	Explain, in terms of molecular polarity, why ammonia is more soluble than methane in water at 20°C at standard pressure.		
	inctriane in water at 20°C at standard pres	sui c.	
32. I can define	Definition:		
intramolecular forces and intermolecular forces and give	Intramolecular forces		
examples of each.			
	Examples:		
	Intermolecular forces		
	Examples:		
33. I can list the			
intramolecular forces from STRONGEST to WEAKEST.	Strongestbonds>	bonds Weakest	

34. I can list the			
intermolecular forces from	Strongest>	>	
STRONGEST to WEAKEST.		Mankast	
		Weakest	
35. I can state 8 physical	Eight physical properties that are dependent on	the type of bonding and the	
properties of substances that are	strength of the IMF are:	the type of bonding and the	
dependent on the type of bonding			
in the substance and the strength	1 2		
of the IMF.			
	3 4		
	5 6		
	7 8		
	7 8		
36. I can state the			
relationship between polarity and	As the polarity of the molecule	, the strength	
IMF strength.			
	of the IMF	•	
37. I can state the			
relationship between size of the	As the size of the molecule	, the strength	
molecule and IMF strength.			
	of the IMF	•	
38. Given the physical state	At STP indine (Ia) is a crystal and fluorine (Fa) is	a gas Compare the strength	
of some substances, I can compare	At STP, iodine (I_2) is a crystal and fluorine (F_2) is a gas. Compare the strength of the IMF in a sample of I_2 at STP to the strength of the IMF in a sample of F_2		
the relative strength of the IMF.	_	n of the livir in a sample of F ₂	
G	at STP.		
39. Given the boiling points	At STP, $\mathrm{CF_4}$ boils at -127.8 $^{\mathrm{O}}\mathrm{C}$ and $\mathrm{NH_3}$ boils at -3	33.3 ^o C. Which substance has	
(or freezing points) of some	stronger IMF? Justify your answer.		
substances, I can compare the relative strength of the IMF.			
relative strength of the livir.			
40. I can explain and apply			
the meaning of "Hydrogen bonding	"Hydrogen bonding is FON" means		
is FON".			
	Which compound has hydrogen bonding between its molecules?		
	wither compound has nyarogen bonding between its indicedies:		
	A) CH ₄ B) CaH ₂ C) KNO ₃	D) H ₂ O	

41. I can define normal boiling point, vapor pressure, volatile, and nonvolatile.	Definition: normal boiling point
	vapor pressure
	volatile
	nonvolatile
42. I can determine the vapor pressure of ethanol, ethanoic acid, propane, or water at a given temperature.	What is the vapor pressure of ethanol at 56°C?
43. I can state the relationship between the strength of IMF and vapor pressure.	As the strength of IMF, vapor pressure
44. I can explain the how adding a nonvolatile solute to a pure solvent affects the freezing point of the solvent.	When a nonvolatile solute is added to a solvent, the freezing point of the solvent because the solute
	The more solute that is added, the the feeezing point gets.
45. I can explain the how adding a nonvolatile solute to a pure solvent affects the boiling point of the solvent.	When a nonvolatile solute is added to a solvent, the boiling point of the solvent because the solute
	The more solute that is added, the the boiling point gets.

46. I can state 5 physical	Five physical properties of ionic substances are:				
properties of ionic substances.					
	1				
	2				
	3				
	4				
	5				
47. I can identify a substance	A solid substance was tested in the laboratory. The results are shown below.				
as "ionic" based on its properties.	*dissolves in water				
	*is an electrolyte				
	* has a high melting point				
	Based on these results, the solid substance could be				
	ANTI.				
	A) Hg B) AuCl				
	C) CH ₄				
	D) C ₁₂ H ₂₂ O ₁₁				
	<i>B</i>) C ₁₂ 11 ₂ 20 ₁₁				
	Based on bond type, which compound has the highest melting point?				
	A) CH ₄ B) C ₁₂ H ₂₂ O ₁₁ C)NaCl D) C ₅ H ₁₂				
48. I can state 5 physical	Five physical properties of molecular substances are:				
properties of molecular					
substances.	1				
	2.				
	3				
	4				
	5				

_____49. I can identify a substance as "molecular" based on its properties.

A chemist performs the same tests on two homogeneous white crystalline solids, *A* and *B*. The results are shown in the table below.

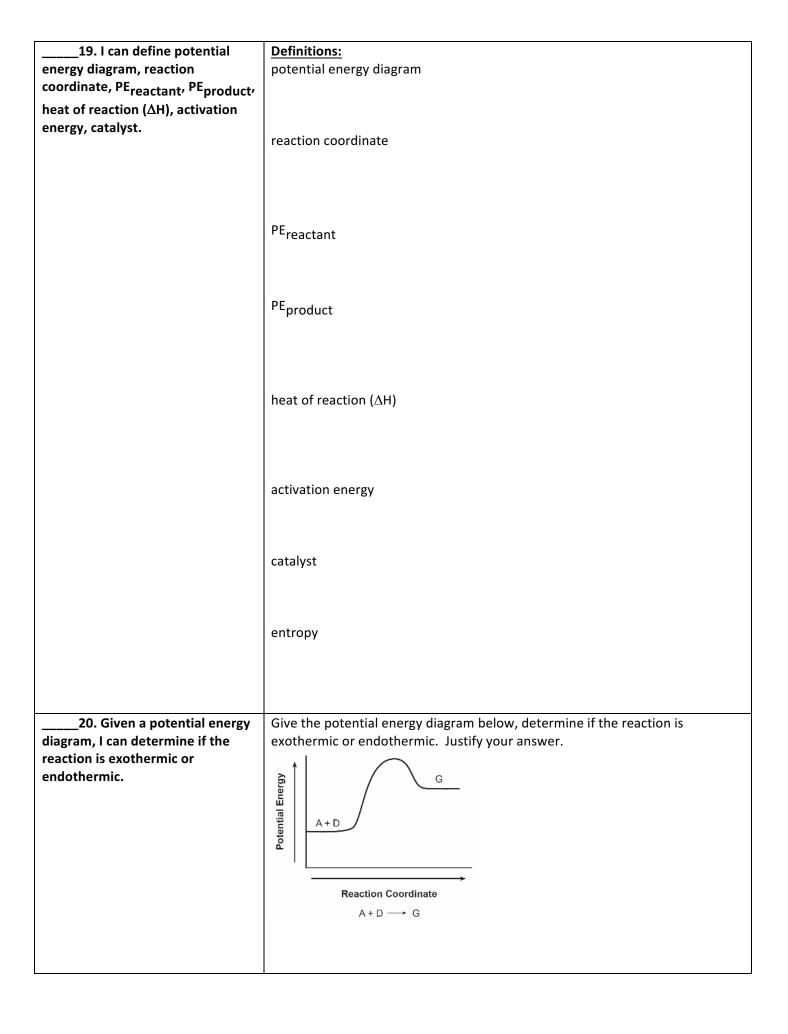
	Solid A	Solid B
Melting Point	High, 801°C	Low, decomposes at 186°C
Solubility in H ₂ O (grams per 100.0 g H ₂ O at 0°C)	35.7	3.2
Electrical Conductivity (in aqueous solution)	Good conductor	Nonconductor

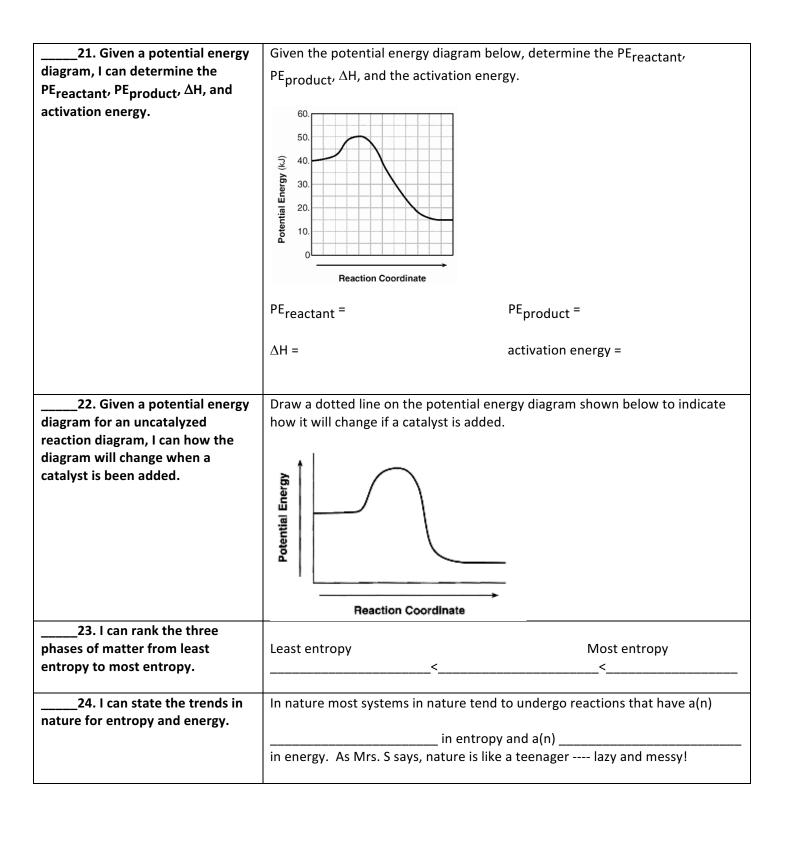
The results of these tests suggest that

- A) both solids contain only ionic bonds
- B) both solids contain only covalent bonds
- Solid A contains only covalent bonds and solid B contains only ionic bonds
- D) solid A contains only ionic bonds and solid B contains only covalent bonds

Which terms describe a substance that has a low melting point and poor electrical conductivity?

- A) covalent and metallic
- B) covalent and molecular
- C) ionic and molecular
- D) ionic and metallic


Unit 12: Reaction Rates & Equilibrium


If you can do all the things listed below, you are ready for the Unit 12 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything from Unit 1.			
2. I can still do everything			
from Unit 2.			
3. I can still do everything			
from Unit 3.			
4. I can still do everything			
from Unit 4.			
5. I can still do everything from Unit 5.			
6. I can still do everything			
from Unit 6.			
7. I can still do everything			
from Unit 7.			
8. I can still do everything			
from Unit 8.			
9. I can still do everything			
from Unit 10.			
10. I can still do everything			
from Unit 11.	Dofinition.		
	<u>Definition:</u> effective collision		
	effective comsion		
44			
11. I can define effective			
collision and collision theory	collision theory		
	As the temperature		, the reaction rate for most
	no the temperature		
	chemical reactions		because there are
42 1	effective collisions between	particles.	
12. I can state and apply the relationship between temperature and reaction rate in terms of			
collision theory.	Given the reaction:		
,	2Mg(s) + O ₂ (g)> 2M	gO(s)	
	Zivig(3) O2(g)	60(3)	
	At which temperature would	the reaction occur	r at the greatest rate?
	The winer temperature would	the reaction occur	i at the greatest fate:
	A) 0 ^o C B) 15 ^o C	C) 95 ⁰ C	D) 273K
	7,00	C) 33 C	U L J N

	As the surface area	, the reaction rate	
13. I can state and apply the	because there are effective collisions between particles.		
relationship between surface area and reaction rate in terms of collision theory.	At STP, which 4.0 g sample of $Zn(s)$ will react most quickly with dilute hydrochloric acid?		
	A) lump B) bar C)	powdered D) sheet metal	
	, the reaction rate		
14. I can state and apply the	collisions between particles	because there are effective s.	
relationship between concentration and reaction rate in terms of collision theory.	At 20° C, a reaction between powdered $Zn(s)$ and hydrochloric acid will occur most quickly if the concentration of the HCl is		
	A) 1.0 M B) 1.5 M	C) 2.5 M D) 2.8 M	
15. I can state the unit used to measure energy.	Energy is measured in		
	Given the following balanced equation:		
16. Based on the location of			
the energy term, I can determine if the reaction is exothermic or endothermic.			
17. I can use Table I to determine if a reaction is	Which balanced equation represents an endothermic reaction?		
exothermic or endothermic.		o(a)	
	A) $C(s) + O_2(g) \rightarrow CO_2(g)$ B) $CH_4(g) + 2O_2(g) \rightarrow$		
	C) $N_2(g) + 3H_2(g) \rightarrow 2$		
	D) $N_2(g) + O_2(g) \rightarrow 2NO(g)$		

25. Given a balanced	Which reaction results in an increase in entropy?	
equation, I can determine if the	A) $CO_2(g) \rightarrow CO_2(s)$	
reaction results in an overall	B) $H_2O(\ell) \rightarrow H_2O(s)$	
increase or decrease in entropy.	C) $Ca(s) + 2 H_2O(\ell) \rightarrow Ca(OH)_2(aq) + H_2(g)$	
	D) NaCl(aq) + AgNO ₃ (aq) \rightarrow AgCl(s) + NaNO ₃ (aq)	
	2) Nachad) + Agnos(ad) - Agel(s) + Nanos(ad)	
	Which equation shows an increase in entropy?	
	A) $CO_2(g) \rightarrow CO_2(s)$	
	B) $CO_2(\ell) \rightarrow CO_2(g)$	
	C) $CH_3OH(\ell) \rightarrow$	
	CH ₃ OH(s)	
	D) $CH_3OH(g) \rightarrow$	
	CH₃OH(ℓ)	
	Which reaction has the greatest increase in entropy?	
	A) $2 \text{ H}_2\text{O}(\ell) \rightarrow 2 \text{ H}_2(g) + \text{O}_2(g)$	
	B) $2 \text{ H}_2\text{O}(g) \rightarrow 2 \text{ H}_2(g) + \text{O}_2(g)$	
	C) $H_2O(g) \rightarrow H_2O(\ell)$	
	D) $H_2O(\ell) \rightarrow H_2O(s)$	
26. I can define forward reaction, reverse reaction,	Definitions: forward reaction	
reversible reaction, and closed	Torward reaction	
system		
	reverse reaction	
	reversible reaction	
	reversible redetion	
	closed system	
27. I can state the three	The three types of equilibrium are:	
types of equilibrium.		
	equilibrium	
	equilibrium and	
	eguilibrium	
	equilibrium	
	I I	

28. I can state two conditions that apply to all systems at equilibrium.	In a system at equilibrium the of the forward			
systems at equilibrium	reverse reaction must be	and the		
		of the reactants and products must be		
	·			
29. Given a list of reactions, I can identify reactions that show	Which balanced equation represents ph A) $H_2(g) + I_2(s) <> 2HI(g)$	ase equilibrium?		
equilibrium (chemical, phase, or solution).	B) I ₂ (s) <> I ₂ (g)			
,	C) $KCl(s) \stackrel{H_2O}{<>} KCl(aq)$			
	D) $2KCl(s) + 3O_2(g)> 2KClO_3$			
	Which balanced equation represents solution equilibrium?			
	A) $H_2(g) + I_2(s) <> 2HI(g)$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	C) KCl(s) $\stackrel{\text{H}_2\text{O}}{<}$ KCl(aq)			
	D) $2KCl(s) + 3O_2(g)> 2KClO_3$			
	Which balanced equation represents ch			
	A) $H_2(g) + I_2(s) <> 2HI(g)$	emical equilibrium		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$C) KCl(s) \stackrel{H_2O}{<>} KCl(aq)$			
	D) $2KCl(s) + 3O_2(g)> 2KClO_3$			
30. In terms of saturation, I	In terms of saturation, a solution that is	at aquilibrium must be		
can describe a solution that is at equilibrium.		at equilibrium must be		
31. I can state LeChatelier's	LeChatelier's Principle states			
Principle.	·			
32. Given a balanced equation at equilibrium, I can	Given the reaction at equilibrium:			
predict the direction of shift in the	$2SO_2(g) + O_2(g) <> 2SO_3(g) + 392kJ$			
equilibrium when the temperature, concentration, or	Predict the direction of shift in the equilibrium (right, left, no shift) when the			
pressure is changed or if a catalyst	following changes are made to the syste			
is added.	Change Increase concentration of SO ₂	Direction of Shift		
	Increase concentration of SO ₃			
	Increase temperature			
	Increase pressure			
	Add a catalyst			
	1_1	·		

Unit 13: Organic Chemistry

If you can do all the things listed below, you are ready for the Unit 13 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything	
from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
6. I can still do everything	
from Unit 6.	
7. I can still do everything	
from Unit 7.	
8. I can still do everything	
from Unit 8.	
9. I can still do everything	
from Unit 10.	
10. I can still do everything	
from Unit 11.	
11. I can still do everything	
from Unit 12.	
	<u>Definitions:</u>
	Definitions: organic compound
	organic compound
	organic compound
	organic compound
12. I can define organic	organic compound
compound, saturated	organic compound saturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	organic compound
compound, saturated	organic compound saturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	organic compound saturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	organic compound saturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	saturated hydrocarbon unsaturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	organic compound saturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	saturated hydrocarbon unsaturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	saturated hydrocarbon unsaturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	saturated hydrocarbon unsaturated hydrocarbon
compound, saturated hydrocarbon, unsaturated	saturated hydrocarbon unsaturated hydrocarbon

	Draw the complete structural formula for $\mathrm{CH_3CH_2CH_2CH_2CH_3}$.		
13. I can expand a condensed structural formula to show the structural formula of an organic compound.	Draw the complete structural formula for CH ₃ CHCHCH ₃ .		
14. I can state the name and	The element that is capable of forming rings, chains, and networks is		
symbol of the element that is	Its symbol is HONC1234 tells me that		
capable of forming rings, chains, and networks.			
and networks.			
15. I can explain the meaning of and apply HONC1234.	Which structural formula <i>correctly</i> represents a hydrocarbon molecule? A) H $C - C$ H C		
16. Given the formula, I can	Which formula represents a hydrocarbon?		
determine if a compound is a	A) CH ₃ CH ₂ CH ₂ CHO B) CH ₃ CH ₂ CH ₂ CH ₃		
hydrocarbon or not.	C) CH ₃ CH ₂ COOH D) CH ₃ CH ₂ COOCH ₃		
17. Given the name, I can use Reference Table P to determine how many carbons atoms are in a compound.	Determine how many carbon atoms are in each of the following compounds: decaneethene 3-nonene1-pentyne		
	Determine the homologous series of hydrocarbons to which each of the		
18. Given the name, I can	following belongs:		
use Reference Table Q to determine to which class of	decane2-decene		
hydrocarbons a compound belongs.	3-nonene1-pentyne		
	Determine if each of the following is a saturated or unsaturated hydrocarbon.		
19. Given the name, I can	betermine it each of the following is a saturated of unsaturated hydrocarbon.		
determine if the hydrocarbon is saturated or unsaturated.	decane ethene		
	3-nonene1-pentyne		

	Determine the homologous series of hydrocarbons to which each of the		
	following belongs:		
	H—C—C—C—H 		
	H H H H		
20. Given the formula, I can	H H H-C-C≡C-C-H H H belongs to the series.		
determine to which homologous	H-C-C≡C-C-H		
series a hydrocarbon belongs.	H H belongs to the series.		
	н н н	•	
	H H H H H H H H H H H H H H H H H H H		
	4 4 7		
	belongs to the series.		
	Determine if each of the following is a saturated or unsaturated hydrocarbon.		
21. Given the formula, I can			
determine if a hydrocarbon is			
saturated or unsaturated.	CH ₃ CH ₂ CH ₂ CH ₃		
	CH ₃ CHCHCH ₃ Determine the number of hydrogen atoms in each of the following.		
22.Given the name, I can use	betermine the number of hydrogen atoms in each of the following.		
Reference Table Q to determine	decane1-butene	-	
how many hydrogen atoms the			
	decane1-butene		
how many hydrogen atoms the	3-nonene1-pentyne Given a formula representing a compound:		
how many hydrogen atoms the	3-nonene1-pentyne Given a formula representing a compound:		
how many hydrogen atoms the	3-nonene1-pentyne Given a formula representing a compound:		
how many hydrogen atoms the	3-nonene1-pentyne		
how many hydrogen atoms the	3-nonene1-pentyne Given a formula representing a compound: O H H H H - C - C - C - C - H I I I I H H H H		
how many hydrogen atoms the	3-nonene1-pentyne		
how many hydrogen atoms the hydrocarbon contains. 23. Given a list of	3-nonene1-pentyne		
how many hydrogen atoms the hydrocarbon contains. 23. Given a list of compounds, I can determine which	3-nonene1-pentyne		
how many hydrogen atoms the hydrocarbon contains. 23. Given a list of	3-nonene1-pentyne		
how many hydrogen atoms the hydrocarbon contains. 23. Given a list of compounds, I can determine which	3-nonene1-pentyne		
how many hydrogen atoms the hydrocarbon contains. 23. Given a list of compounds, I can determine which	3-nonene		
how many hydrogen atoms the hydrocarbon contains. 23. Given a list of compounds, I can determine which	3-nonene1-pentyne		
how many hydrogen atoms the hydrocarbon contains. 23. Given a list of compounds, I can determine which	3-nonene		
how many hydrogen atoms the hydrocarbon contains. 23. Given a list of compounds, I can determine which	3-nonene		

24. Given a structural formula, I can use Reference Table R to identify to which class of organic compounds a substance belongs.	H-C-C-C-C-N H H H H This compound is classified as A) an aldehyde B) an amide	Given the structural formula: H H H H H-C-C-O-C-C-H H H H H H H H The compound represented by this formula can be classified as an A) organic acid B) ether C) ester D) aldehyde Given the formula for an organic compound: H H H H O H-C-C-C-C-C-C-OH H H H H This compound is classified as an A) aldehyde B) amine C) ester D) organic acid
25. I can use Reference Tables P & Q and IUPAC nomenclature to name simple hydrocarbons.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

	Name the following organic compounds.		
26. I can use Reference Tables P & R and IUPAC nomenclature to name simple compounds in any of the classes of organic compounds.	H H H H H C C C C C C C H 	H H O H H C C C C C H H H H	H H H P —H H—C—C—C—C
	H-C-C=C-C-H H H H	H H H H H-C-C-C-C-O-H H H H H	H-C-C-C-C-N H H H H H
	H	H H H H H-C-C-C-C-C H H H O	H H H O H-C-C-C-C-N H H H H
	H H H H 	H O H H H—C—O—C—C—C—H H H H	H H H H H—C—C—C—O—C—H H H H
	F stands for		This type of organic
	reaction results from a	reaction of	to form
	typically requires a catalyst, in the form of an enzyme to occur.		
	S stands for		This type of organic
	reaction happens when	า	hydrocarbons
27. I can use F-SCAPES to list		'	nydrocarbons
			or some other element (often a
27. I can use F-SCAPES to list and describe the 7 types of organic reactions.	replace one of the halide).	fo	
and describe the 7 types of organic	replace one of thehalide). C stands for	fo	or some other element (often a In this type of organic
and describe the 7 types of organic	replace one of thehalide). C stands for reaction a	fo	or some other element (often a In this type of organic reacts with
and describe the 7 types of organic	replace one of thehalide). C stands for reaction a	fo	or some other element (often a In this type of organic reacts with and
and describe the 7 types of organic	replace one of thehalide). C stands for reaction a	to form It is an exotherm	or some other element (often a In this type of organic reacts with and
and describe the 7 types of organic	replace one of thehalide). C stands for reaction a A stands for reaction	to form It is an exotherm	or some other element (often a In this type of organic reacts with and ic reaction In this type of organic
and describe the 7 types of organic	replace one of thehalide). C stands for reaction a A stands for reaction	to form It is an exotherm	or some other element (often a In this type of organic reacts with and ic reaction In this type of organic

	P stands for	In this type of organic	
	reaction many		
		eneralized form of this reaction looks like	
	this		
	Note: n and n are very large numbers equal to $n \begin{pmatrix} H \\ H \end{pmatrix} c = c \begin{pmatrix} H \\ H \end{pmatrix} $	/ u u \	
27. I can use F-SCAPES to list and describe the 7 types of organic reactions. (continued)	E stands for	In this type of organic	
	reaction an	_ reacts with a	
		to form an and	
	The	e products of this reaction are typically	
	fragrant.		
	S stands for	In this type of organic	
	reaction a reacts with a to form		
	You can really "clean up" if you remember this		
	organic reaction.		
	Given the balanced equation for an organic reaction:	•	
	$C_2H_2 + 2Cl_2 \rightarrow C_2H_2Cl_4$ This reaction is best classified as	b = c + b = c + b = c c - c - c - c - c - c	
	A) addition B) esterification C) fermentation D) substitution	Which type of reaction is represented by this equation? A) combustion B) esterification	
	Given the equation:	C) polymerization D) substitution	
	$C_2H_6+Cl_2 \rightarrow C_2H_5Cl+HCl$	Given the reaction:	
28. Given an equation, I can	This reaction is best described as	O \parallel $CH_3C-OH + HOC_2H_5$ \longrightarrow $CH_3C-O-C_2H_5 + H_2O$	
identify the type of organic reaction that is occurring.	A) addition involving a saturated hydrocarbon B) addition involving an unsaturated hydrocarbon	This reaction is an example of	
reaction that is occurring.	c) substitution involving a saturated hydrocarbon D) substitution involving an unsaturated hydrocarbon	A) fermentation B) saponification C) hydrogenation D) esterification	
	Which equation represents fermentation?	Which reaction best represents the complete combustion of ethene?	
	A) $C_2H_6 + Cl_2 \rightarrow C_2H_6Cl + HCl$ B) $C_2H_2O_4 \rightarrow C_2C_2H_4OH + C_2C_2$	A) $C_2H_4 + HCl \rightarrow C_2H_5Cl$	
	B) $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$ C) $CH_3COOH + CH_3OH \rightarrow CH_3COOCH_3 + H_2O$	B) $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$ C) $C_2H_4 + 3 O_2 \rightarrow 2 CO_2 + 2 H_2O$	
	D) $nC_2H_4 \rightarrow (C_2H_4)n$	D) $C_2H_4 + H_2O \rightarrow C_2H_5OH$	