Unit 1: Getting Ready for Chemistry

If you can do all the things listed below, you are ready for the Unit 1 test.

	тт
	5 important lab safety rules are:
	1. wear appropriate personal protection equipment (PPE)
	2. follow directions
1. I can list five important	3. no food or drink in the lab
lab safety rules.	
	A no non experiment related electronics in the lab
	4. no non-experiment related electronics in the lab
	5. no horseplay
2. I can identify the most	Draw and label as many of the common laboratory tools as you can!
common laboratory tools such as:	
beaker, graduated cylinder,	
Erlenmeyer flask, scoop, beaker	
tongs, test tube, test tube rack,	
test tube holder, crucible tongs,	
Bunsen burner, striker, stirring	
rod, funnel, dropper pipette (aka	
eye dropper)	
	A farmer wants to know what the effect the amount of fertilizer has on the
	amount of fruit an apple tree produces.
3. I can determine the	What is the independent variable?
independent and dependent	amount of fertilizer
variable in a lab experiment.	
	What is the dependent variable?
	amount of fruit apple tree produces
	How many significant figures are there in 30.50 cm?
4. I can determine the	4
number of significant figures in a	How many significant figures are there in 400.0 sec?
measurement.	4
	To the correct number of significant figures, what is the answer to
	5.93 mL + 4.6 mL?
5. I can determine the	10.5 mL
answer to a math problem to the	To the correct number of significant figures, what is the answer to
correct number of significant	5.93 cm * 4.6 cm?
figures.	27 cm ²
1	// cm ^
	27 011

6. I can read the meniscus on a graduated cylinder to the correct number of significant figures.	80 mL MENISCUS 70 mL GRADUATED CYLINDER The volume is <u>75.7</u> mL.		
7. I can use dimensional analysis to solve math problems.	To the correct number of significant figures, determine how many meters there are in 15.4 ft. 4.69 m To the correct number of significant figures, determine how many minutes there are in 2.7 years. 1.4 x 10⁶ min		
8. I can convert numbers into scientific notation from standard notation.	Convert 87,394,000,000,000 to scientific notation. 8.7394 x 10¹³ Convert 0.0000040934 to scientific notation. 4.0934 x 10⁻⁶		
9. I can convert numbers into standard notation from scientific notation.	Convert 5.8 x 10^9 to standard notation. 5,800,000,000 Convert 4.3 x 10^{-5} to standard notation. 0.000 043		
10. I can use my calculator to input numbers in scientific notation using the "2 nd function & EE keys.	Enter the number 5.67 x 10 ⁵² on your calculator and show Mrs. S. She'll initial this box, if you've done it correctly! calculator display should read 5.67E52		
11. I can convert between different metric units by using "King Henry died by drinking chocolate milk".	9.3 km = ? m 9300 m 39,983 mL = ?kL 0.39983 kL		
12. I can convert between different metric units by using Reference Table C and dimensional analysis.	1.5 x 10 ⁻³ km = ? μm 1.5 x 10⁶ μm 4.67 x 10 ¹³ pm = ?dm 467 dm		

13. I can determine which equation to use from Reference Table T by looking at the given information.	Which equation would you use to solve the following problem? (Don't solve it.Just tell me WHICH equation to use.)Problem: How many grams of LiBr (gram-formula mass = 87 g/mol) would 3.5moles of LiBr be?moles = given mass/gfm		
14. I can solve for "x" when it's in the denominator of a fraction.	What is the volume, in cm ³ , of 54.6 g of beryllium (density = 1.85 g/cm ³) 29.5 cm³		
15. I can convert ^O C to degrees kelvin and degrees kelvin to ^O C.	What kelvin temperature is equal to 200 ^o C? 473K What Celsius temperature is equal to 200K? -73 ^o C		
16. Given the symbol I can write the name for any element in Group 1, Group 2, Group 13, Group 14, Group 15, Group 16, Group 17 or Group 18 without using a Periodic Table.	Al aluminum Ca calcium Ne neon N nitrogen Na sodium S sulfur Br bromine Ge germanium		
17. Given the symbol or the name, I can determine the Group for any element in Group 1, Group 2, Group 13, Group 14, Group 15, Group 16, Group 17 or Group 18 without using a Periodic Table.	Al Group 13 Ca Group 2 Ne Group 18 N Group 15 Na Group 1 S Group 16 Br Group 17 Ge Group 14		
18. I can define gram- formula mass (AKA molar mass).	Definition: gram formula mass is the mass of one mole of substance		

	How many moles of atoms are in N_2 ?	
	2	
19. Given the chemical	What is the total # of moles of atoms in $Pb(C_2H_3O_2)_2$?	
symbol/formula, I can determine	15	
how many atoms are present.	15	
not many atoms are present.	How many moles of C atoms are in $Pb(C_2H_3O_2)_2$?	
	4	
	What is the gfm for N_2 ?	
20. I can determine the	28 g/mol	
gram-formula mass for any		
element or compound.	What is the gfm for $Pb(C_2H_3O_2)_2$?	
	325 g/mol	
	Definition:	
21. I can define a mole as it	A mole is a unit to measure the amount of substance. One mole of substance	
pertains to chemistry.	is equal to its gfm. It is also equal to $6.02 \times 10_{23}$ particles. If the substance is	
	a gas at STP, one mole will occupy 22.4 L of volume.	
22. I can find the number of	94.3 g is how many moles of NaCl?	
moles of substance if I am given		
the mass and formula for the	1.61 moles	
substance.		
	What is the percent by mass of Mg in $Mg(NO_3)_2$?	
23. I can determine the		
percent composition of an	18.8%	
element in a compound.		
24. I can convert between	How many moles of carbon atoms are there in 4.8 x 10^{24} atoms of C?	
moles and numbers of particles		
using Avogadro's number?		
	How many L does 4.60 moles of O ₂ occupy (assuming STP)?	
25. I can convert between	2	
moles and L (assuming STP).	103 L	

Unit 2: Introduction to Matter

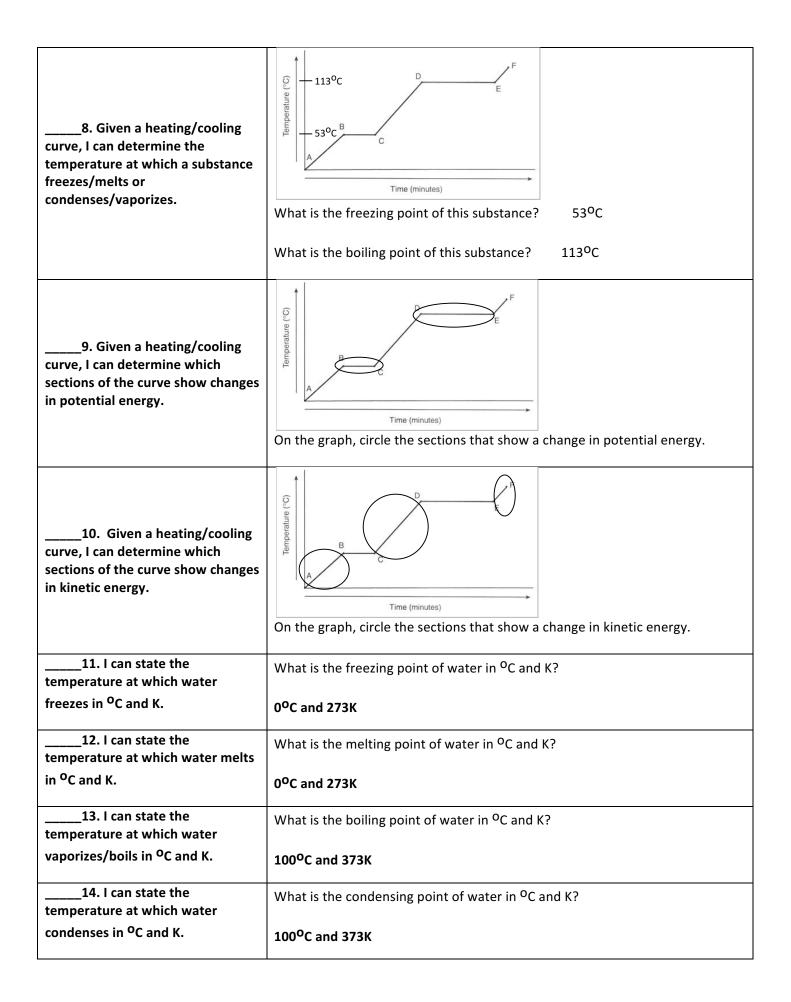
If you can do all the things listed below, you are ready for the Unit 2 test.

1. I can still do everything			
from Unit 1.			
	Definitions: atom – smallest particle of matter that retains the properties of an element		
	element –a substance that cannot be broken down into a simpler substance		
2. I can define the following: atom, element, compound, mixture	compound – two or more elements che	mically combined in a fixed ratio	
	mixture – two or more substances physically combined in a variable ratio		
	2 Atoms of 1 Element	2 Molecules of 1 Compound	
	\bigcirc \bigcirc		
	Mixture of 2 elements	Mixture of 2 compounds	
3. I can draw particle diagrams to represent an atom, an element, a molecule, a compound, a mixture			
	Mixture of an eleme	nt and a compound	

	Put each of the following examples into the correct column.		
	Examples: C ₁₂ H ₂₂ O ₁₁ , NaCl, Fe, salt water, air, CO ₂ , H ₂ , Ar, soda		
4. I can classify substances as a pure substance (element or compound) or as a mixture.	Element Fe H ₂ Ar	<u>Compound</u> C ₁₂ H ₂₂ O ₁₁ NaCl CO ₂	<u>Mixture</u> salt water air soda
5. I can define homogeneous mixture and heterogeneous mixture in terms of particle distribution.	uniform distribution of p	two or more substances p	
6. I can give an example of homogeneous and heterogeneous mixtures.	Two examples of homogeneous mixtures: a. brass b. a pitcher of Kool-Aid Two examples of heterogeneous mixtures: a. snickers bar b. soil		
7. I can classify a property as physical or chemical.	Write "P" for physical or "C" for chemical on the line provided. Pcopper (II) sulfate is blue. C_copper reacts with oxygen. Pcopper can be made into wire. Pcopper has a density of 8.96 g/cm ³ . P_copper melts at 1358K. C_copper reacts with nitric acid. P_copper doesn't dissolve in water.		

	Write "D" for physical or "C" for chamical on the line manifold		
	Write "P" for physical or "C" for chemical on the line provided.		
	Pcopper (II) sulfate dissolves in water.		
	Ccopper reacts with oxygen to form solid copper (I) oxide.		
8. I can classify a change as	Psolid copper is melted.		
physical or chemical.	Pa chunk of copper is pounded flat.		
	Pcopper and zinc are mixed to form brass.		
	Pa large piece of copper is chopped in half.		
	••••••••••••••••••••••••••••••••••••••		
9. In a particle diagram, I can distinguish between a physical change and a chemical change.	Circle the particle diagram that best represents Substance A after a physical change has occurred.		
	Definitions: solute – the substance in a mixture that gets dissolved		
	solvent – the substance in a mixture that does the dissolving		
10. I can define: solute, solvent, solution, and solubility.	solution – a homogenous mixture		
	solubility – the amount of solute that will dissolve in a given amount of solvent at a given temperature		
11. I can describe the trend in solubility for solids as the temperature changes.	As the temperature increases, the solubility of a solid <u>increases</u> .		

12. I can describe the trend	As the temperature increases, the solubility of a gas decreases
in solubility for gases as the	
temperature changes.	
	Write "S" for soluble and "NS" for not soluble . Use Reference Table F to determine the solubility of the following compounds:
13. I can use Reference Table F to determine if a substance will	Spotassium chlorate
be soluble in water.	NSsilver bromide
	Slithium carbonate
	<u>NS</u> calcium carbonate
14. I can use Table G to	How many grams of KClO ₃ must be dissolved in 100 grams of water at 20 ⁰ C
determine how much solute to add	to make a saturated solution?
at a given temperature to make a	56 g
saturated solution. 15. I can use Table G to	
determine if a solution is	If 20.0 g of $NaNO_3$ are dissolved in 100.0 g of water at 25.0 ^o C, will the
saturated, unsaturated, or	resulting solution be saturated, unsaturated, or supersaturated?
supersatured.	unsaturated
16. I can define: dilute, concentrated, concentration, and electrolyte.	Definitions: dilute – a solution in which a small quantity of solute is dissolved in a large quantity of solvent concentrated – a solution in which a large quantity of solute is dissolved in a small quantity of solvent concentration – the amount of solute dissolved in a given amount of solvent electrolyte – a substance that can conduct electricity when dissolved in water
17. I can interpret Table G to determine which solution is the most concentrated or the most dilute.	Which solution is most concentrated? (A) 125.0 g of KI dissolved in 100.0 g of water at 10° C B) 70.0 g of NH ₄ Cl dissolved in 100.0 g of water at 70° C C) 120.0 g of KNO ₃ dissolved in 100.0 g of water at 70° C D) 30.0 g of SO ₂ dissolved in 100.0 g of water at 90° C
18. I can use Reference Table T to calculate the concentration of a solution in ppm.	What is the concentration, in ppm, of a 2600 g of solution containing 0.015 g of CO ₂ ? 5.7 ppm
19. I can use Reference Table T to calculate the concentration of a solution in molarity.	What is the molarity of 3.5 moles of $NaBr$ dissolved in 500 mL of water? $$\mathbf{7M}$$


20. I can determine how matter will be separated using filtration.	When a mixture of sand, salt, sugar, and water is filtered, what passes through the filter? salt, sugar, and water		
21. I can describe how matter can be separated using distillation.	Which physical property makes it possible to separate the components of crude oil by means of distillation? difference in boiling points		
23. I can state which separation process (decanting, filtering, distilling, chromatography, or evaporating) is best for a given situation.	To separate a mixture of salt and water, the best method of separation would be_evaporation To separate a mixture of ethanol and water, the best method of separation would be To separate a mixture of food coloring dyes, the best method of separation would be To separate a mixture of food coloring dyes, the best method of separation would be To separate a mixture of food coloring dyes, the best method of separation would be To separate a mixture of oil and water, the best method of separation would be		
24. I can define allotrope.	Defintion: allotrope – different forms of the same element that possess different molecular structures		
25. I can state the differences between two allotropes of the same element.	Two allotropes of the same element have different molecular structures and therefore have different <u>physical</u> and <u>chemical</u> properties.		

Unit 3: Matter & Energy

If you can do all the things listed below, you are ready for the Unit 3 test.

1. I can still do everything from Unit 1.			
from Unit 2.			
	<u>Defintions:</u> kinetic energy – energy a s	substance has due to its ı	motion
	potential energy – energy a substance has that is stored in chemical bonds and static interactions		
3. I can define kinetic energy,	temperature – a measure of the average kinetic energy of a substance		
potential energy, temperature, heat, endothermic, and exothermic.	heat – energy the moves between two substances due to differences in temperature between the substances		
	endothermic – chemical r e energy to occur	eaction or physical chang	e that requires the input of
	exothermic – chemical rea occurs	action of physical change	that releases energy as it
	Draw a particle diagram to represent atoms of Li in each phase.		
4. I can use particle diagrams to show the arrangement and	Solid	Liquid	
spacing of atoms/molecules in different phases.	8888		
			\cup \cup

		Solid	Liquid	Gas
5. I can compare solids, liquids, and gases in terms of their relative kinetic energy, type of molecular motion, ability to	Relative Kinetic Energy	low	moderate	high
	Type of Molecular Motion	vibrations, only	vibration and rotation	vibration, rotation, and translation
completely fill a container, ability to change shape.	Ability to Completely Fill Any Container	no	no	yes
	Ability to Change Shape	no	yes	yes
6. I can state the change of phase occurring in fusion, solidification, condensation, vaporization, melting, boiling, sublimation, deposition, and freezing.	During fusion a substance changes fromsolidtoliquidtosolid During solidification a substance changes fromliquidtosolid During condensation a substance changes fromgasto During vaporization a substance changes fromliquidto During melting a substance changes fromliquidto During boiling a substance changes fromliquidto During boiling a substance changes fromliquidto During sublimation a substance changes fromsolidto During sublimation a substance changes fromsolidto During deposition a substance changes fromsolidto During freezing a substance changes fromgasto During freezing a substance changes fromliquidto			
7. I can indicate if a phase change is exothermic or endothermic.	endothermic. fusion/melting	EXO EXO EXO EXO EXO EXO EXO ENDO		is exothermic or

	Which heat equation should be used in each of the following:
15. I can use Reference Table T to determine which "heat" equation is needed for a given problem.	 a. How much heat is needed to vaporize 100.0 g of water at 100^oC? Q = mH_v b. How much heat is needed to raise the temperature of 100.0 g of water by 35^oC? Q=mCΔT c. How much heat is needed to melt 100.0 g of ice at 0^oC?
	$Q = mH_f$
	Definitions: specific heat capacity – the amount of heat required to increase the
	temperature of one gram of substance by 1°C (or K)
16. I can define specific heat capacity, heat of fusion, heat of vaporization.	heat of fusion - the amount of heat required to melt one gram of substance at its melting point
	heat of vaporization - the amount of heat required to vaporize one gram of substance at its boiling point
	How many grams of water can be heated by 15.0 ⁰ C using 13,500 J of heat?
	215 g
17. I can use the "heat" equations to solve for any variable, if I am given the other variables.	It takes 5210 J of heat to melt 50.0 g of ethanol at its melting point. What is the heat of fusion of ethanol?
	104 J/g
	The five parts of the Kinetic Molecular Theory are: a. Gases consist of tiny particles.
	b. The size of the particles is so small compared to the space between the particles that the volume of the actual gas particles is negligible.
18. I can state the 5 parts of the Kinetic Molecular Theory.	c. Gas particles are in constant, random, straight-line motion, colliding with the walls of the container. These collisions create pressure.
	d. Gas particles have no intermolecular forces (IMF).
	e. The average kinetic energy of gas particles is directly proportional to their Kelvin temperature.

19. I can define an ideal gas.	Definition: ideal gas –any gas that conforms to all of the parts of the KMT. Ideal gases are theoretical although some gases are close. Hydrogen and helium are the closest to ideal gases at all temperatures and pressures.
20. I can state the conditions of pressure and temperature under which a gas will act "ideally".	A gas will act most "ideally" under the conditions of <u>low</u> pressure and <u>high</u> temperature.
21. I can state the two elements that act ideally most of the time.	The two elements that act ideally most of the time are <u>hydrogen</u> & <u>helium</u> .
22. I can explain how pressure is created by a gas.	What causes gas molecules to create pressure? Collisions with the walls of the container.
23. I can state the relationship between pressure and volume for gases (assuming constant temperature).	At constant temperature, as the pressure on a gas increases, the volumedecreases
24. I can state the relationship between temperature and volume for gases (assuming constant pressure).	At constant pressure, as the temperature on a gas increases, the volumeincreases
25. I can state the relationship between temperature and pressure for gases (assuming constant volume).	In a fixed container (AKA "has constant volume), as the temperature on a gas increases, the pressure <u>increases</u> .
26. I can state Avogadro's Hypothesis.	Avogadro's Hypothesis says <u>two samples of an ideal gas, if they have the same</u> <u>temperature, pressure, and volume, will contain the same number of</u> <u>molecules.</u>
27. I can remember to convert ^O C to K when using the Combined Gas Law to determine changes in V, P, or T of a gas.	A gas originally occupies 2.3L at 56 ^o C and 101.3 kPa. What will its volume be at 100 ^o C and 105.7 kPa? 2.5 L

	Definition: boiling point – the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid		
28. I can define boiling point and vapor pressure.	vapor pressure – the pressure exerted by a vapor in equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system		
29. I can state the condition	The normal boiling point of a substance occurs at a pressure of		
of pressure that is used for "normal" boiling points.	1atm/ <u>101.3</u> kPa.		
30. I can state the			
relationship between atmospheric pressure and boiling point.	As the atmospheric pressure increases, the boiling point <u>increases</u> .		

Unit 4: Atomic Theory

If you can do all the things listed below, you are ready for the Unit 4 test.

1. I can still do everything		
from Unit 1.		
2. I can still do everything		
from Unit 2.		
3. I can still do everything		
from Unit 3.		
4. I can describe John Dalton's contribution to our understanding of the atom.	Dalton's Model: hard sphere model What it looked like:	
5. I can describe JJ Thomson's contribution to our understanding of the atom.	Thomson's Experiment: cathode ray experiment Thomson's Model: plum pudding model What it looked like:	
6. I can describe Ernest Rutherford's contribution to our understanding of the atom.	Rutherford's Experiment: gold foil experiment electrons Rutherford's Model: nuclear model; empty space model What it looked like: small, positively charged	
7. I can describe Niels Bohr's contribution to our understanding of the atom.	Bohr's Model: planetary model; electron shell model What it looked like:	

8. I can describe James Chadwick's contribution to our understanding of the atom.	What subatomic particle did Chadwick discover? neutron			
	What does the modern model of the atom look like?			
9. I can describe how Schrodinger, Heisenberg, Pauli, Dirac, and others contributed to our understanding of the atom.	Where, in an atom, are electrons likely to be found according to the modern model? orbitals			
10. I can state the chronological order of atomic models.	From oldest to newest, list the models that we have used to describe an atom. hard sphere> plum pudding> empty space> electron shell> modern model			
		Particle #1	Particle #2	Particle #3
	Name	proton	neutron	electron
11. I can state the three subatomic particles, their location in an atom, their charges, and their	Charge	+1	0	-1
masses (in amu).	Mass	1 amu	1 amu	0.0005 amu
	Location in Atom	nucleus	nucleus	orbital
12. I can explain why atoms are electrically neutral.	Atoms are electrically neutral because the number of <u>protons</u> is			
	equal to the number Definitions:	r of <u>electrons</u>	·	
13. I can define mass number and atomic number.	mass number – the total number of protons and neutrons in an atoms atomic number – the number of protons in an atom; defines which element the atom is			
14. Given the mass number, I can determine the number of protons, neutron, and electrons in an atom.	In an atom of ²¹² Po, how many protons are present? 84 84 In an atom of ²¹² Po, how many electrons are present? 84 84			
	In an atom of ²¹² Po 84	, how many neutro	ns are present?	128

15. I can use the Periodic	How many protons are in an atom of selenium? 34		
Table to determine the atomic number of an element.	How many protons are in an atom of silicon? 14		
16. I can define isotope.	Definition: isotope – each of two or more forms of an element that have the same number of protons, but a different number of neutrons giving each different form a different mass		
	Write the four different methods of isotopic notation for an atom of bromine that has 45 neutrons.		
17. I can represent an atom in any of the four methods of isotopic notation.	Method 1 Method 2 Method 3 Method 4 Br-80 bromine-80 80Br 80Br 35		
18. I can calculate average atomic mass given the masses of the naturally occurring isotopes and the percent abundances.	Element Q has two isotopes. If 77% of the element has an isotopic mass of 83.7 amu and 23% of the element has an isotopic mass of 89.3 amu, what is the average atomic mass of the element? 84.998 amu		
19. I can define ion, cation, and anion.	Definitions: ion – an atom that has lost or gained electrons cation – a positively charged ion that results from the loss of electrons anion – a negatively charged ion that results from the gaining of electrons		
20. Given the mass number and the charge, I can determine the number of protons, neutrons, and electrons in an ion.	How many protons are in ${}^{19}F^{1-?}$ 9 9 How many neutrons are in ${}^{19}F^{1-?}$ 10 9 How many electrons are in ${}^{19}F^{1-?}$ 10 9		

	Definitions: principal energy level (PEL)- main energy level or shell of an atom
21. I can define principal energy level, orbital, ground state, excited state, electron configuration, and bright line spectrum.	orbital – most probable electron location in the modern mechanical model
	ground state – lowest energy state of an electron; electron configurations on the PT are shown in the ground state
	excited state – any energy state of an electron that is higher than ground state
	electron configuration – the ground state arrangement of electrons in PEL
	bright line spectrum – characteristic colors of light that are given off by an atom when an excited electron releases energy and returns to the ground state
	PEL1 holds a maximum of <u>2</u> electrons.
22. I can state the maximum number of electrons that will fit	PEL2 holds a maximum of <u>8</u> electrons.
into each of the first four principal	PEL3 holds a maximum of <u>18</u> electrons.
energy levels.	PEL4 holds a maximum of <u>32</u> electrons.
23. I can state the relationship between distance	As the distance between the nucleus and the electron increases, the energy of
from the nucleus and energy of an electron.	the electron <u>increases</u> .
24. I can state the relationship between the number of the principal energy level and the distance to the atom's nucleus.	As the number of the PEL increases, the distance to the nucleus <u>increases</u> .
25. I can explain, in terms of subatomic particles and energy states, how a bright line spectrum is created.	A brightline spectrum is created when electrons in a high energy state release energy and return to a lower energy state

	Bright-Line Spectra				
	Element E				
26. I can identify the					
elements shown in a bright line spectrum.	750 nm 360 nm				
	Which element(s) is/are present in the mixture?				
	D & E				
	Definition:				
27. I can define valence electrons.	valence electron – the electrons in the outermost s & p suborbitals; the farthest number to the right on the electron configuration on the PT				
	How many valence electrons does an atom of rubidium have in the ground				
28. I can locate and interpret	state? 1				
an element's electron					
configuration on the Periodic Table.	How many principal energy levels contain electrons in an atom of iodine in the ground state?				
	6				
	Which electron configuration represents an atom of potassium in the excited				
	state?				
29. I can identify an electron	A) 2-8-7-1				
configuration that shows an atom in the excited state.	B) 2-8-8-1				
	C) 2-8-7-2				
	D) 2-8-8-2				
30. I can draw Lewis electron	Draw the Lewis electron dot diagram for the following atoms:				
dot diagrams for a given element.	Li Be B C N O: F: Ne:				
	Definition:				
	octet of valence electrons – having 8 valence electrons; a full valence shell				
31. I can define and state the importance of "octet of valence	The importance of having a complete "octet of valence electrons" is it makes				
electrons."	the element "stable" and unreactive				

Unit 5: Nuclear Chemistry

If you can do all the things listed below, you are ready for the Unit 5 test.

1. I can still do everything from Unit 1.							
2. I can still do everything							
from Unit 2.							
3. I can still do everything							
from Unit 3.							
4. I can still do everything							
from Unit 4.			1				
	Туре	Symbol	Mass #	Charge	Penetrating	Shielding	Bio
					Power	Required	Hazard
	alpha	α	4	2	very low	paper, clothing	none unless inhaled
5. I can compare types of radiation in terms of symbol, mass	beta	β-	0	-1	low	metal foil	eyes & skin
number, charge, penetrating power, shielding required, and biological hazard.	gamma	γ	о	0	very high	concrete & lead	whole body
	neutron	1 0n	1	0	very high	water; lead	whole body
	positron	β+	0	+1	low	metal foil	eyes & skin
6. I can identify the three types of nuclear reactions.	The three types of nuclear reactions are: a. fission b. fusion c. transmutation						
7. I can define transmutation, fission, and fusion.	Definitions: transmutation – process of changing one element into another; may be natural or artificial fission – process of splitting apart a large atom (usually U of Pu) into two roughly equal size pieces by hitting it with a neutron fusion – process of putting small nuclei (usually H) together to form a larger nucleus (He)						

8. I can state two synonyms	Two synonyms for spontaneous decay are:natural decay			
for spontaneous decay.	and <u>natural transmutation</u> .			
9. I can show how mass number and electrical charge must be conserved in any nuclear reaction.	Complete the following nuclear equation:			
10. I can explain what makes a nucleus stable or unstable.	The stability of the nucleus is dependent on the <u>proton</u> to <u>neutron</u> ratio.			
11. I can explain the difference between natural transmutation and artificial transmutation.	The difference between natural transmutation and artificial transmutation is that in natural transmutation an <u>unstab</u> le <u>nucleus</u> breaks apart on its own and in artificial transmutation a <u>stable</u> <u>nucleus</u> is made <u>unstab</u> le by hitting it with a high energy particle (such as a proton, neutron, or gamma radiation).			
12. I can identify a natural decay reaction from a list of reactions.	Which equation represents a natural decay? A) ${}^{9}_{4}\text{Be} + {}^{1}_{1}\text{H} \rightarrow {}^{6}_{3}\text{Li} + {}^{4}_{2}\text{He}$ B) ${}^{27}_{13}\text{Al} + {}^{4}_{2}\text{He} \rightarrow {}^{30}_{15}\text{P} + {}^{1}_{0}\text{n}$ C) ${}^{14}_{7}\text{N} + {}^{4}_{2}\text{He} \rightarrow {}^{17}_{8}\text{O} + {}^{1}_{1}\text{H}$ D) ${}^{235}_{92}\text{U} \rightarrow {}^{231}_{90}\text{Th} + {}^{4}_{2}\text{He}$			
13. I can identify an artificial transmutation reaction from a list of reactions.	Which equation represents artificial transmutation? (A) ${}_{7}^{16}N \rightarrow {}_{8}^{16}O + {}_{-1}^{0}e$ (B) ${}_{7}^{14}N + {}_{2}^{4}He \rightarrow {}_{8}^{17}O + {}_{1}^{1}H$ (C) ${}_{19}^{37}K \rightarrow {}_{18}^{37}Ar + {}_{+1}^{0}e$ (D) ${}_{19}^{42}K \rightarrow {}_{20}^{42}Ca + {}_{+1}^{0}e$			
14. I can identify a fission reaction from a list of reactions.	Which equation represents fission? (A) $_{0}^{1}n + _{92}^{235}U \rightarrow _{56}^{142}Ba + _{36}^{91}Kr + 3 _{0}^{1}n$ B) $_{88}^{226}Ra \rightarrow _{86}^{222}Rn + _{2}^{4}He$ C) $_{3}^{6}Li + _{0}^{1}n \rightarrow _{1}^{3}H + _{2}^{4}He$ D) $_{1}^{2}H + _{1}^{3}H \rightarrow _{2}^{4}He + _{0}^{1}n$			
15. I can identify a fusion reaction from a list of reactions.	Which equation represents fusion? A) ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{142}_{56}Ba + {}^{91}_{36}Kr + 3 {}^{1}_{0}n$ B) ${}^{226}_{88}Ra \rightarrow {}^{222}_{86}Rn + {}^{4}_{2}He$ C) ${}^{6}_{3}Li + {}^{1}_{0}n \rightarrow {}^{3}_{1}H + {}^{4}_{2}He$ D) ${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$			

16. I can state the conditions	The temperature and pressure conditions needed for fusion to happen are:
of temperature and pressure that are needed for a fusion reaction to	hightemperature andhighpressure
happen.	
17. I can explain why all nuclear reactions release LOTS more energy than chemical reactions do.	Nuclear reactions release LOTS more energy than chemical reactions do because some of the mass is converted to energy
18. Given a list of reactions, I can differentiate a "nuclear" reaction from a "chemical" reaction.	Which of the following equations represent NUCLEAR reactions? A) $H_2O(g) \rightarrow H_2O(\ell)$ B) $C(s) + O_2(g) \rightarrow CO_2(g)$ C) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$ D) ${}_{92}^{235}U + {}_{0}^{1}n \rightarrow {}_{56}^{142}Ba + {}_{36}^{91}Kr + 3 {}_{0}^{1}n$
19. I can define half-life.	Definition: half-life – the amount of time required for one-half of a radioactive isotope to decay
	Based on Reference Table N, what fraction of a radioactive sample of Au-198 will remain unchanged after 10.78 days?
20. Given the length of the half-life and the amount of time	1/16
	1/16 What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds)
half-life and the amount of time that has passed, I can determine	What was the original mass of a radioactive sample of K-37 if the sample
half-life and the amount of time that has passed, I can determine	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds)
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take?
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take?
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample

24. I can state 5 beneficial uses for radioactive isotopes.	 Five beneficial uses for radioactive isotopes are: a. radioactive dating b. tracing chemical and biological processes c. industrial measurement d. nuclear power e. detection and treatment of disease
25. I can state the scientific use of 4 specific radioactive isotopes.	C-14 is used fordating previously living organisms I-131 is used fortreating thyroid disorders U-238 is used fordating geologic formations Co-60 is used fortreating cancerous tumors
26. I can state three risks associated with radioactivity and radioactive isotopes.	Three risks associated with radioactivity and radioactive isotopes are: a. biological exposure b. long-term storage and disposal c. nuclear accidents

Unit 6: Periodic Table

If you can do all the things listed below, you are ready for the Unit 6 test.

1. I can still do everything from Unit 1.	
2. I can still do everything from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	Classify as shief the following class such as matche (NA) is such as (NINA) as
	Classify each of the following elements as metals (M), nonmetals (NM), or metalloids (MTLD).
6. I can classify elements as	<u>NMBM_KM_LiNMCNM_</u> Ar
metals, nonmetals, or metalloids based on their placement on the	<u>MTLD</u> Sb <u>NM</u> H <u>M</u> Fe <u>M</u> Au <u>NM</u> S
Periodic Table.	<u>NM</u> F <u>MTLD</u> Si <u>M</u> Fr <u>NM</u> He <u>NM</u> Rn
	<u>MTLD</u> Ge <u>M</u> Al <u>MTLD</u> As <u>M</u> Bi <u>NM</u> I
	Group 1 is called thealkali metals
7. I can state the group names for elements in groups 1, 2,	Group 2 is called thealkaline earth metals
17, and 18.	Group 17 is called the <u>halogens</u> .
	Group 18 is called thenoble gases
8. I can explain why elements in the same group have similar chemical properties.	Elements in the same group have similar chemical properties because they have similar electron configurations; same number of valence electrons
9. I can explain why the elements in Group 18 don't	Elements in Group 18 don't usually react with other elements because they have a stable octet of valence electrons
usually react with other elements.	
10. I can state the meaning	STP stands for _standard temperature and pressure
of "STP" and the Reference Table on which it can be found.	The values can be found on Reference TableB
11. I can state the	The two elements that are liquids at STP are:
names/symbols for the two elements on the Periodic Table that are liquids at STP.	mercuryandbromine

	The 11 elements that are gases at STP are:		
	hydrogen	, helium ,	
		,,,,,	
	fluorine	,chlorine,	
12. I can state the	nitrogen	,oxygen,	
names/symbols of the 11 elements that are gases at STP.	radon	vonon	
that are gases at SIF.		,Xenon,	
	krypton	, argon ,	
	and <u>neon</u>	_	
13. I can state how the	The elements on the Periodic Ta	ble are arranged by increasing	
elements on the Periodic Table are	atamia numbar		
arranged.	atomicnumber The seven diatomic elements are	 2:	
14. I can list the 7 diatomic	BrINClHOF		
elements.			
	Definitions:		
	electronegativity – the tendency of an element to attract electrons towards itself in a chemical bond		
	first ionization energy – the amount of energy required to remove the most		
	loosely held electron from an at	com in the gaseous state	
	atomic radius – 1/2 the internuclear distance between two of the same atom		
15. I can define			
electronegativity, first ionization			
energy, atomic radius, ionic radius, metallic character, and	ionic radius – radius of an ion (sorry, I just don't want to make it more complicated than it needs to be ☺)		
activity/reactivity.			
	metallic character – how easy it	is for an element to lose its valence electrons	
	activity/acativity have likely it	is that an alamant will loss (asin alastrons	
	activity/reactivity – now likely it	is that an element will lose/gain electrons	

	As one reads down a group from top to bottom, electronegativity		
	decreases becausethe valence electrons are farther		
16. I can state the periodic	from the nucleus and are less tightly held		
trend for electronegativity and	As one reads across a period from left to right, electronegativity		
explain why it occurs.	increasesbecauseeach element is getting closer to		
	having a stable octet of valence electrons		
	As one reads down a group from top to bottom, first ionization energy		
	decreasesbecausethe valence electrons are farther		
17. I can state the periodic	from the nucleus and are less tightly held		
trend for first ionization energy and explain why it occurs.	As one reads across a period from left to right, , first ionization energy		
	increases because each element is getting closer to		
	having a stable octet of valence electrons		
	As one reads down a group from top to bottom, atomic radius		
	increases because there are more PEL.		
18. I can state the periodic			
trend for atomic radius and explain why it occurs.	As one reads across a period from left to right, atomic radius		
	decreases because <u>the valence electrons are added to the</u>		
	same shell and there is increased nuclear charge attracting the electrons>		
	As one reads down a group from top to bottom, metallic character		
	increasesbecause _the valence electrons are farther		
19. I can state the periodic	from the nucleus and are less tightly held.		
trend for metallic character and	As one reads across a period from left to right, metallic character		
explain why it occurs.	decreases becauseelements become less likely		
	to lose valence electrons and more likely to gain them		
20. I can state the trend for	As one reads down a group from top to bottom, the melting points and boiling		
melting points and boiling point			
for METALS as one reads down a group	points for METALS <u>decreases</u> .		
group. 21. I can state the trend for	As one reads down a group from top to bottom, the melting points and boiling		
melting points and boiling point			
for NONMETALS as one reads	points for NONMETALS <u>increases</u> .		
down a group.			

22. I can state the trend for	As one reads down a group from ten to	bottom the activity/reactivity of	
activity/reactivity for METALS as	As one reads down a group from top to bottom, the activity/reactivity of		
one reads down a group.	METALS <u>increases</u> .		
23. I can state the trend for			
	As one reads down a group from top to bottom, the activity/reactivity of		
activity/reactivity for NONMETALS	NONMETALS <u>decreases</u> .		
as one reads down a group.			
	Metals tend to lose electrons (get oxidized). This loss of electrons causes		
24. I can explain how loss or	cations to be <u>smaller</u> than the	e original atom.	
gaining of electrons affects the			
radius of an element.	Nonmetals tend to gain electrons (get	reduced). This gain of electrons causes	
		he original atom.	
	Ten properties of metals are:		
	a. tend to lose electrons	b. form positively charged ions	
	c. shiny	d. conduct heat	
25. I can list 10 properties of	e. conduct electricity	f. malleable	
metals.	· · · · · · · · · · · · · · · · · · ·		
	g. ductile	h. high tensile strength	
	g. ductile	n. ingli tensne strengtn	
	i bish danaitu	; bish way and by	
	i. high density	j. high mp and bp	
	Eight properties of non metals are:		
	a. tend to gain electrons	b. form negatively charged ions	
26 Lean list 8 properties of	c. dull	d. nonconductors of heat & electricity	
26. I can list 8 properties of nonmetals.			
	e. low densities	f. brittle	
	g. low tensile strength	h. low mp and bp	
		· ·	

Unit 7: Acids & Bases

If you can do all the things listed below, you are ready for the Unit 7 test.

1. I can still do everything from Unit 1.			
2. I can still do everything from Unit 2.			
3. I can still do everything from Unit 3.			
4. I can still do everything from Unit 4.			
5. I can still do everything from Unit 5.			
6. I can still do everything from Unit 6.			
		Arrhenius	"Alternate Method" (AKA Bronsted-Lowry)
7. I can use two different systems to define acids and bases.	acid	any substance that yields H ₃ O ⁺ ions as the only positive ion in solution	any substance that donates protons
	base	any substance that yields hydroxide as the only negative ion in solution	any substance that can accept a proton
	Definitions: pH – measure of the acidity or alkalinity of a solution		
8. I can define pH, [], hydronium ion, hydroxide ion, and electrolyte.	 [] - concentration hydronium ion – H₃O⁺ AKA hydrogen ion, H⁺; found in higher concentrations in acids hydroxide ion – OH⁻ ion; found in higher concentration in bases 		
	electrolyte – any substance that conducts electricity when dissolved in water		

9. I can state another name for the hydronium ion.	The hydronium ion is also known as the <u>hydrogen ion, H</u> ⁺ .		
10. Given the hydronium ion concentration, I can determine the pH.	If the $[H_3O^+]$ is 1 x 10 ⁻⁸ , the pH of the s	olution will be8	
	If the $[H_3O^+]$ is 1 x 10 ⁻¹ , the pH of the solution will be <u>1</u> .		
	If the $[H_3O^+]$ is 1 x 10 ⁻¹⁴ , the pH of the solution will be <u>14</u> .		
	If the $[H_3O^+]$ is 1 x 10 ⁻⁷ , the pH of the solution will be <u>7</u> .		
	If the pH of a solution is 4.5, the solution	n isacidic	
11. Based on pH, I can	If the pH of a solution is 7.0, the solution	n isneutral	
determine if a solution is acidic, basic, or neutral.	If the pH of a solution is 11, the solutior	n isbasic	
	If the pH of a solution is 5.7, the solution is <u>acidic</u> .		
13. I can state the	As the H ⁺ concentration decreases , the pHincreases		
relationship between H ⁺ concentration and pH.	As the H ⁺ concentration increases, the pH <u>decreases</u> .		
	If the H ⁺ concentration is increased by a factor of 10,		
	the pH will decrease by1		
14. I can determine the change in pH when the H ⁺	If the H ⁺ concentration is increased by a factor of 100,		
concentration of a solution is changed.	the pH will decrease by <u>2</u>	_·	
	If the H ⁺ concentration is decreased by a factor of 1000,		
	the pH will increase by3		
	List the chemical names of three comm	on acids and three common bases.	
	Acids hydrochloric acid	Bases sodium hydroxide	
15. I can give examples of the chemical names of common acids and bases.	phosphoric acid	potassium hydroxide	
	sulfuric acid	ammonia	

	List the chemical formulas of three con	nmon acids and three common bases.	
16 Lean give examples of	Acids	Bases	
	HC1	NaOH	
16. I can give examples of chemical formulas of common			
acids and bases.	H ₂ SO ₄	КОН	
	H ₃ PO ₄	NH ₃	
	1.31.04		
	Definition:		
	neutralization – double replacement re producing water and a salt	eaction between an acid and a base	
17. I can define	producing water and a sait		
neutralization.			
	Which of the following equations is a n	eutralization reaction?	
18. I can identify a	A) $6Na + B_2O_3> 3Na_2O + 21$	В	
neutralization reaction from a list	$(B) Mg(OH)_2 + 2HBr> MgBr_2$	2 + 2HOH	
of reactions.	C) $2H_2 + O_2> 2H_2O$		
	D) $2KClO_3> 2KCl + 3O_2$		
19. I can state the name of	Which piece of laboratory equipment is	s used to carry out a titration?	
the laboratory equipment that is		burette	
used to carry out a titration.			
20. I can state the purpose of	Why do scientists do titrations?		
titration.	To determine the concentration of an unknown acid or base		
	If it requires 56.95 mL of 0.0043 M HN what is the concentration of the $LiOH$	-	
21. I can solve for any			
variable in the titration equation			
from Reference Table T.	0.00071 M		
22. I can state the three			
types of substances that are electrolytes.	<u>Acids</u> , <u>bases</u> , and <u>s</u> compounds that are electrolytes.	salts are three classes of	
	Which indicator is red in a solution that	t has a pH of 3.6?	
23. Given the pH, I can	A) bromcresol green		
determine the color of acid-base	B) bromthymol blue		
indicators.	(C))itmus		
	O		
	D) thymol blue		

Unit 8: Redox & Electrochemistry

If you can do all the things listed below, you are ready for the Unit 8 test.

1. I can still do everything from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
6. I can still do everything	
from Unit 6.	
7. I can still do everything	
from Unit 7.	
	Definitions:
	oxidation – loss of electrons
	reduction – gain of electrons
8. I can define oxidation,	
reduction, oxidation number, and	
redox reaction	oxidation number – the oxidation state; an indicator of the oxidation of an
	element
	noder monthing and monthing in which a reduction and evidence accura
	redox reaction – any reaction in which a reduction and oxidation occurs
	Assign oxidation number to each of the elements below.
9. I can assign oxidation	Assign oxidation number to each of the elements below.
numbers to any element.	0 ₂ LiSi0
	Assign oxidation numbers to each element in the compounds below.
10. I can assign oxidation	
numbers to the elements in a	MnCl ₃ : Mn +3 Cl -1
compound.	<u>-</u>
	H ₂ SO ₄ : H <u>+1</u> S <u>+6</u> O <u>-2</u>
	Assign oxidation numbers to each element in the polyatomic ions below.
	Assign oxidation numbers to each element in the polyatomic ions below.
11. I can assign oxidation	
numbers to the elements in a	PO ₄ ³⁻ : P <u>+5</u> O <u>-2</u>
polyatomic ion.	
	ClO ₃ ⁻ : Cl+5O2

	Which half-reaction equation represents the reduction of a potassium ion?
	(A) $K^+ + e^ K$ (B) $K + e^ K^+$ (C) $K^+ - K + e^-$ (D) $K - K^+ + e^-$
12. I can distinguish between an oxidation half-reaction and a	Given the reaction:
reduction half-reaction.	$Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$
	Which half-reaction correctly shows the oxidation that occurs?
	$\overrightarrow{A} Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
	B) $Fe(s) + 2e^- \rightarrow Fe^{2+}(aq)$
	C) $Cu^{2+}(aq) \rightarrow Cu(s) + 2e^{-}$
	D) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
13. I can state the Law of Conservation of Charge.	The law of Conservation of Charge states in any chemical reaction charge must be conserved
	The two half-reactions that come from the following equation are:
	Li(s) + Ag+(aq)> Li+(aq) + Ag(s)
14. I can break a redox reaction into its two half-reactions.	oxidation half-reaction Li(s)> Li+(aq) + e ⁻
	reduction half-reaction Ag ⁺ (aq) + e ⁻ > Ag

	Given the reaction:	
	$\underline{Cl_2(g)} + \underline{Fe^{2+}(aq)} - \underline{Fe(s)} + \underline{Cl^{-}(aq)}$	
	When the equation is correctly balanced using smallest whole numbers, the coefficient of Cl ⁻ will be	
	A) 1 (B)2 C) 6 D) 7	
	Which simple oxidation-reduction reaction is <i>not</i> correctly balanced?	
	A) $\operatorname{Sn}(s) + \operatorname{Cu}^{2+}(aq) \rightarrow \operatorname{Cu}(s) + \operatorname{Sn}^{2+}(aq)$	
15. I can balance a redox	B) $Ni(s) + Sn^{2+}(aq) \rightarrow Sn(s) + Ni^{2+}(aq)$	
reaction.	$ C) 2 I^{-}(aq) + Fe^{3+}(aq) \rightarrow Fe^{2+}(aq) + I_2(s) $	
	D) 2 I-(aq) + Hg ²⁺ (aq) \rightarrow Hg(ℓ) + I ₂ (s)	
	Given the balanced equation:	
	$3 \operatorname{Fe}^{3+}(aq) + \operatorname{Al}(s) \rightarrow 3 \operatorname{Fe}^{2+}(aq) + \operatorname{Al}^{3+}(aq)$	
	What is the total number of moles of electrons lost by 2	
	moles of Al(s)?	
	A) 1 moleB) 6 molesC) 3 molesD) 9 moles	
	C) 3 moles D) 9 moles Which balanced equation represents a redox reaction?	
	A) $AgNO_3(aq) + NaCI(aq) \rightarrow AgCI(s) + NaNO_3(aq)$	
	B) $H_2CO_3(aq) \rightarrow H_2O(\ell) + CO_2(g)$	
	C) NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H ₂ O(ℓ)	
	D $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$	
16. I can identify a redox		
reaction from a list of chemical reactions.		
	Which balanced equation represents a redox reaction?	
	(A) $PCl_5 \rightarrow PCl_3 + Cl_2$	
	B) KOH + HCl \rightarrow KCl + H ₂ O C) LiBr \rightarrow Li ⁺ + Br ⁻	
	D) $\operatorname{Ca}^{2+} + \operatorname{SO}_4^{2-} \to \operatorname{CaSO}_4$	
	Which of the following elements is most likely to react?	
17. From a list of given list of	A) Cu B) Al	
elements, I can determine which element is most active.	CLi	
	D) Mg	

The two types of electrochemical cells are:				
18. I can state the two types				
of electrochemical cells.	voltaic and	electrolytic		
		Voltaic	Electrolytic	
		Voltaic	Liectiolytic	
		salt bridge	power supply	
		anode	anode	
	Components	cathode	cathode	
		electrolyte	electrolyte	
19. I can compare the two	Oxidation occurs at the	anode	anode	
types of electrochemical cells in terms of: components, location of	Oxidation occurs at the	unouc	unouc	
oxidation, location of reduction,	Reduction occurs at	cathode	cathode	
direction of electron flow,	the			
conversion between electrical and	Electrons flow from	anode to cathode	anode to cathode	
chemical energy, and spontaneity				
of reaction.	Energy conversion that	chemical energy is	electrical energy is	
	occurs in this cell	converted to electrical	converted to chemical	
		energy	energy	
	Is this reaction spontaneous			
	or does it require an outside	spontaneous	requires and outside power source	
	power source to happen?			
20. I can state the purpose of	The purpose of the salt bri	age is to allow for the mig	gration/movement of ions	
the salt bridge in a voltaic cell.				
-				
	The diagram below represents an ele	ectrochemical cell.		
	Salt bridge			
	Zn-	Cu		
21. Given an electrochemical				
cell, I can predict the direction of electron flow.	Zn ²⁺ (aq) Cu ²⁺ (aq)			
electron now.	1.0 M			
	What occurs when the switch is clos	ed?		
	A) Zn is reduced.B) Cu is oxidized.			
	C) Electrons flow from Cu to Zn. D) Electrons flow from Zn to Cu.			
	Explain, in terms of atoms	and ions, why the mass of	the cathode increases	
	during the operation of an			
22. I can explain, in terms of			m the solution get	
atoms and ions, the changes in	reduced to atoms and become part of the cathode.Explain, in terms of atoms and ions, why the mass of the anode decreases			
mass that take place at the anode and cathode of an electrochemical				
and cathode of an electrochemical cell.	 during the operation of an electrochemical cell. The mass of the anode decreases because atoms from the cathode get 			
	oxidized into ions and bec		_	

Unit 10: Chemical Reactions

If you can do all the things listed below, you are ready for the Unit 10 test.

1. I can still do everything from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
6. I can still do everything	
from Unit 6.	
7. I can still do everything	
from Unit 7.	
8. I can still do everything	
from Unit 8.	
	Write the chemical formula for the following compounds:
9. Given the IUPAC name, I	
can write the chemical formula for	sodium bromide <u>NaBr</u> lithium selenide <u>Li2Se</u> _
binary compounds.	
	iron (III) fluoride <u>FeF3</u> vanadium (V) oxideV2O5
	Write the IUPAC name for the following compounds:
10. Given the chemical	while the for Ae nume for the following compounds.
formula, I can write the IUPAC	CrOchromium (II) oxide
-	
name for binary compounds.	Male magnosium iodido
	MgI2magnesium iodide
	Write the chemical formula for the following compounds:
11. Given the IUPAC name, I	
can write the chemical formula for	calcium oxalateCaC ₂ O ₄
ternary compounds.	
	nickel (II) thiosulfate <u>NiS₂O3</u>
	Write the IUPAC name for the following compounds:
12. Given the chemical	
formula, I can write the IUPAC	$Sn(C_2H_3O_2)_2$ tin (II) acetate
name for ternary compounds.	
	(NH ₄) ₃ PO ₄ ammonium phosphate
	The three types of chemical formulas are:
13. I can state the three	empirical,molecular, &
types of chemical formulas.	
	structural

14. I can define empirical formula, molecular formula, and hydrate.	Definitions: empirical formula – lowest whole number ratio between the elements in a compound molecular formula – the actual ratio of elements in a compound; the true formula hydrate – a compound that has one of more molecules of water associated with it		
15. Given the empirical formula and the molar mass, I can determine the molecular formula of a compound.	What is the molecular formula of a compound that has the empirical formula of CH and a molar mass of 78 g/mol.		
16. I can use particle diagrams to show conservation of mass in a chemical equation.	Using the symbols shown below, complete the equation below to illustrate conservation of mass. • = Al \bigcirc = Br 2A1 + 3Br ₂ > 2AlBr ₃ • \bigcirc		
17. I can balance a chemical equation showing conservation of mass using the lowest whole number coefficients.	Balance the following chemical equation using the lowest whole number coefficients. Al_2(SO_4)_3 +3_Ca(OH)_2>2_Al(OH)_3 +3_CaSO_4		
18. Given a partially balanced equation, I can predict the missing reactant or product.	Use the law of conservation of mass to predict the missing product. $2NH_4Cl + CaO> 2NH_3 + \underline{H_2O} + CaCl_2$		
19. Given a list of chemical reactions, I can classify them as being a synthesis reaction, decomposition reaction, single replacement reaction, or double replacement reaction.	Classify the following reactions as synthesis, decomposition, single replacement, or double replacement.A) Mg + 2AgNO3 \rightarrow Mg(NO3)2 + 2AgSRB) 2Mg + O2 \rightarrow 2MgOSRC) MgCO3 \rightarrow MgO + CO2SD) MgCl2 + 2AgNO3 \rightarrow 2AgCl + Mg(NO3)2D		

20. Given a balanced equation, I can state the mole ratios between any of the reactants and/or products.	Given the following balanced equation, state the mole ratios between the requested substances. $C_3H_8(g) + 5O_2(g)> 3CO_2(g) + 4H_2O(l)$ The mole ratio between C_3H_8 and O_2 is <u>1</u> <u>C_3H_8</u> : <u>5</u> <u>O_2</u> . The mole ratio between C_3H_8 and CO_2 is <u>1</u> <u>C_3H_8</u> : <u>3</u> <u>CO_2</u> . The mole ratio between C_3H_8 and H_2O is <u>1</u> <u>C_3H_8</u> : <u>4</u> <u>H_2O</u> . The mole ratio between CO_2 and O_2 is <u>3</u> <u>CO_2</u> : <u>5</u> <u>O_2</u> . The mole ratio between H_2O and CO_2 is <u>4</u> <u>H_2O</u> : <u>3</u> <u>CO_2</u> .		
21. I can define stoichiometry.	Definition: stoichiometry – the calculations of the quantities in chemical reactions		
22. Given the number of moles of one of the reactants or products, I can determine the number of moles of another reactant or product that is needed to completely use up the given reactant/product.	Using the equation from question #20, determine how many moles of O_2 are needed to completely react with 7.0 moles of C_3H_8 . 35 moles Using the equation from question #20, determine how many moles of CO_2 are produced when 7.0 moles of C_3H_8 completely react. 21 moles		
23. Given the mass or volume of one of the reactants or products, I can determine the mass or volume of another reactant or product that is needed to completely use up the given reactant/product.	 Using the equation from question #20, determine how many liters of O₂ at STF are needed to react completely with 88.0 g of C₃H₈. 224 L Using the equation from question #20, determine how many grams of H₂O are produced when 88.0 g of C₃H₈ completely react. 72 g 		

Unit 11: Bonding & IMF

If you can do all the things listed below, you are ready for the Unit 11 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
6. I can still do everything	
from Unit 6.	
7. I can still do everything	
from Unit 7.	
8. I can still do everything from Unit 8.	
9. I can still do everything	
from Unit 10.	
	The three types of chemical bonds are:
10. I can state the three	ionic,covalent, and
types of chemical bonds.	
	metallic
11. I can state the number of	
valence electrons that an atom	Atoms are most stable when they have <u>8</u> valence electrons.
attains to be most stable.	
12. I can state the two types	The two types of compounds are <u>ionic</u> and
of compounds.	molecular .
	Definition:
	ionic bond
13. I can define ionic bond,	
covalent bond, and metallic bond	covalent bond
in terms of the types of elements	
(metals, nonmetals) from which	
they are formed.	
	metallic bond

	Definition:		
	In an <u>ionic bond</u> , the valence electrons of the <u>metal</u> are		
14. I can define ionic and covalent bonds based on what	transferred to thenonmetal so that each atom attains		
	a stable octet (like noble gases).		
happens to the valence electrons.	In a <u>covalent bond</u> , the valence electrons of the two <u>nonmetals</u>		
	are <u>shared</u> so that each atom attains a stable octet (like noble gases).		
15. I can explain TICS as it relates to chemical bonding.	TICS stands for <u>transferred ionic, covalent shared</u> . It helps me remember what happens to the electrons in each type of bond.		
	Explain, in terms of valence electrons, why the bonding in methane (CH ₄) is similar to the bonding in water (H ₂ O).		
16. In terms of valence	In both $CH_4 \& H_2O$ the valence electrons are shared to form covalent bonds.		
electrons, I can find similarities and differences between the bonding in several substances.	Explain, in terms of valence electrons, why the bonding in HCl is different than that bonding in NaCl.		
	In HCl the valence electrons are shared to form a covalent bond. In NaCl, the valence electrons are transferred from the Na to the Cl to form an ionic bond.		
	Draw Lewis dot diagrams for the following ionic compounds.		
17. I can draw a Lewis dot	LiBr CaCl ₂		
diagram to represent an ionic compound.	(Sorry. Not doing it.)		
	Draw Lewis dot diagrams for the following molecular substances.		
	H ₂ O CO ₂		
18. I can draw a Lewis dot diagram to represent a molecular (covalently bonded) compound.	(Sorry. I am NOT doing this one either. It's too tough on the computer.)		
	I ₂ CH ₄		

	In a single covalent bond, <u>2</u> electrons are shared.		
19. I can state the number			
of electrons that are shared in	In a double covalent bond, <u>4</u> electrons are shared.		
single and multiple covalent bonds.	In a triple covalent bond, <u>6</u> electrons are shared.6		
	Lewis dot diagrams for ionic compounds have brackets because		
20. I can explain why the			
Lewis dot diagrams of ionic	the elements involved in the bond have charges		
compounds have brackets and the	l su is det discusso for as la sula serve ande de NOT have bas de te te serve		
Lewis dot diagrams of molecular compounds do not.	Lewis dot diagrams for molecular compounds do NOT have brackets because		
	_the electrons are shared and there are no charges		
21. I can state the type of			
bonding that occurs in the	Polyatomic ions have <u>covalent</u> bonding because		
polyatomic ions (Reference Table			
E) and explain why they have that	nonmetals are sharing valence electrons		
type of bonding.			
22. Given the chemical	State the type(s) of bonding in the following compounds:		
formula for a compound, I can	NaCl ionicCOcovalent		
determine the type(s) of bonding			
in the compound.	HgetallicNa3PO4ionic&covalent		
23. I can explain and apply			
the meaning of BARF as is applies	BARF stands for <u>"broken absorbed, released formed"</u>		
to chemical bonding.			
	This means that when a bond is FORMED, energy is <u>released</u>		
	and when a bond is BROKEN, energy is <u>absorbed</u> .		
	Given the balanced equation:		
	$N + N - N_2$		
	Which statement describes the process represented by this equation?		
	A) A bond is formed as energy is absorbed.		
	(B)A bond is formed as energy is released.		
	C) A bond is broken as energy is absorbed.		
	D) A bond is broken as energy is released.		
24. I can explain the			
difference between a polar	Polar covalent bonds are formed when <u>two different</u>		
covalent bond and a nonpolar covalent bond in terms of the	nonmetals share electrons unevenly.		
types of nonmetals involved.	Nonpolar covalent bonds form whentwo of the same		
types of nonmetals involved.	nonmetals share electrons evenly.		
	······································		
25. I can explain how to	The degree of polarity of a covalent bond is determined by the		
determine the degree of polarity of a covalent bond.	electronegativity difference between the		
	_ <u>electronegativity difference</u> between the elements		

26. I can explain why one covalent bond is more or less polar than another covalent bond, based on electronegativity difference.	Explain, in terms of electronegativity difference, why the bond between carbon and oxygen in a carbon dioxide molecule is less polar than the bond between hydrogen and oxygen in a water molecule. The difference in electronegativity between carbon and oxygen is less than the difference in electronegativity between hydrogen and oxygen so the CO bond is less polar.
27. I can define symmetrical and asymmetrical.	Definition: symmetrical – molecule that has the at least two lines of symmetry
	asymmetrical – molecule that does not have lines of symmetry
28. I can state, in order, the	When determining if a MOLECULE is polar or non-polar, the first question to
three questions that are asked to determine if a MOLECULE is polar or nonpolar.	ask is"Is there more than one polar bond?"
	When determining if a MOLECULE is polar or non-polar, the second question to
	ask is"Does the central atom have unshared pairs of electrons?"
	When determining if a MOLECULE is polar or non-polar, the third question to
	ask is"Is the molecule symmetrical?"
29. I can explain and apply	
the meaning of SNAP as it applies to determining molecule polarity.	SNAP means <u>"symmetrical nonpolar, asymmetrical polar"</u>
	Why is a molecule of ${\rm CH}_4$ nonpolar even though the bonds between the carbon and hydrogen are polar?
	(A) The shape of the CH_4 molecule is symmetrical.
	B) The shape of the CH_4 molecule is asymmetrical.
	C) The CH_4 molecule has an excess of electrons.
	D) The CH ₄ molecule has a deficiency of electrons.
	Explain, in terms of charge distribution, why a molecule of water ($\rm H_2O$) is polar.
	A water molecule has asymmetrical distribution of charge.

30. I can determine if a	Determine which molecules are polar and which are nonpolar. Justify your		
molecular is polar or nonpolar.	answer.		
	H ₂ O	CO ₂	
	polar; central atom has	nonpolar; symmetrical	
	unshared electrons	nonpolar, symmetricar	
	,	CH	
		CH ₄	
	nonpolar; no polar bonds	nonpolar; symmetrical	
	nonpolar, no polar bonds	nonpolar, symmetrical	
31. I can explain and apply	"Like dissolves like" means		
the expression "like dissolves like" and give an example.	if two substances have the same polarity (nolar or nonnolar) they will	
	dissolve in one another		
	An example of "like dissolving like" isan	nmonia dissolving in water	
	Explain in terms of molecular polarity why		
	Explain, in terms of molecular polarity, why ammonia is more soluble than methane in water at 20 ⁰ C at standard pressure.		
		Surc.	
	Both ammonia and water are polar so amr	nonia dissolves in water. Methane	
	is nonpolar and therefore will not dissolve	well in polar water.	
32. I can define	Definition:		
intramolecular forces and	Intramolecular forces – forces of attraction	within a molecule	
intermolecular forces and give			
examples of each.			
	Examples: ionic bonds and covalent bonds		
	Intermolecular forces – forces of attraction	between molecules	
	Examples: dipole-dipole, London dispersion	n forces, hydrogen bonds	
33. I can list the			
33. I can list the intramolecular forces from			
STRONGEST to WEAKEST.	Strongestcovalentbonds>	ionicbonds Weakest	
34. I can list the			

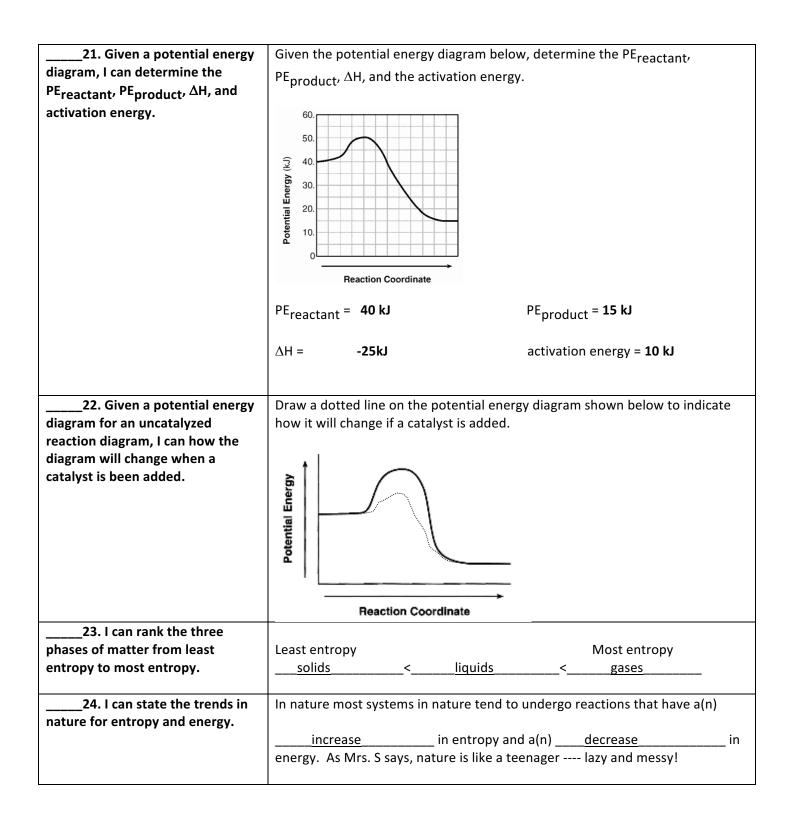
intermolecular forces from	Strongesthydrogen bonds>dipole-dipole>		
STRONGEST to WEAKEST.			
	London dispersion forces Weakest		
35. I can state 8 physical	Eight physical properties that are dependent on the type of bonding and the		
properties of substances that are	strength of the IMF are:		
dependent on the type of bonding			
in the substance and the strength	1physical state 2melting point		
of the IMF.			
	3boiling point 4conductivity		
	5vapor pressure66		
	7. <u>solubility</u> 8. <u>hardness</u>		
36. I can state the			
relationship between polarity and	As the polarity of the molecule <u>increases</u> , the strength		
IMF strength.			
	of the IMFincreases		
37. I can state the			
relationship between size of the	As the size of the moleculeincreases, the strength		
molecule and IMF strength.			
	of the IMFincreases		
38. Given the physical state	At STP, iodine (I_2) is a crystal and fluorine (F_2) is a gas. Compare the strength		
of some substances, I can compare	of the IMF in a sample of ${ m I}_2$ at STP to the strength of the IMF in a sample of ${ m F}_2$		
the relative strength of the IMF.	at STP.		
	F ₂ has weaker IMF than I ₂ .		
	r ₂ has weaker liver than 1 ₂ .		
39. Given the boiling points (or freezing points) of some	At STP, CF_4 boils at -127.8°C and NH_3 boils at -33.3°C. Which substance has		
substances, I can compare the	stronger IMF? Justify your answer.		
relative strength of the IMF.			
	NH3 has stronger IMF because NH3 has a higher boiling point.		
	····2 ···· • ···6•• ··· • • • • • • • • • • •		
40. I can explain and apply			
the meaning of "Hydrogen bonding	"Hydrogen bonding is FON" meansHydrogen bonding occurs when the		
is FON".			
	A) CH_4 B) CaH_2 C) KNO_3 (D) H_2O		

41. I can define normal	Definition:	
boiling point, vapor pressure,	normal boiling point - the temperature at which a substance boils at 1 atm	
volatile, and nonvolatile.	pressure	
	vapor pressure - the pressure exerted by a vapor in equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system volatile – easily evaporated at normal temperatures	
	nonvolatile – not easily evaporated at normal temperatures	
42. I can determine the	What is the vapor pressure of ethanol at 56 ⁰ C?	
vapor pressure of ethanol, ethanoic acid, propane, or water at a given temperature.	49 kPa	
43. I can state the		
relationship between the strength	As the strength of IMF <u>increases</u> , vapor pressure	
of IMF and vapor pressure.	increases	
44. I can explain the how	When a nonvolatile solute is added to a solvent, the freezing point of the	
adding a nonvolatile solute to a		
pure solvent affects the freezing	solvent <u>is lowered</u> because the solute <u>disrupts</u>	
point of the solvent.	crystal formation	
	The more solute that is added, the <u>lower</u> the feeezing point gets.	
45. I can explain the how	When a nonvolatile solute is added to a solvent, the boiling point of the	
adding a nonvolatile solute to a	and the second descent when a balance is a second	
pure solvent affects the boiling point of the solvent.	solvent <u>is raised</u> because the solute <u>increases</u>	
	_attractions between solute and solvent particles	
	The more solute that is added, the <u>higher</u> the boiling point gets.	

46. I can state 5 physical	Five physical properties of ionic substances are:		
properties of ionic substances.			
	1. <u>have ionic bonding</u>		
	2have high mp		
	3have high bp		
	4. low vapor pressure		
	5. <u>conduct electricity as liquids or aqueous</u>		
47. I can identify a substance	A solid substance was tested in the laboratory. The results are shown below.		
as "ionic" based on its properties.			
	*dissolves in water		
	*is an electrolyte		
	* has a high melting point		
	Based on these results, the solid substance could be		
	A) Hg		
	BAuCl		
	$C) CH_4$		
	D) $C_{12}H_{22}O_{11}$		
	Based on bond type, which compound has the highest melting point?		
	A) CH_4 B) $C_{12}H_{22}O_{11}$ CNaCl D) C_5H_{12}		
48. I can state 5 physical	Five physical properties of molecular substances are:		
properties of molecular			
substances.	1have covalent bonding		
	2. have low mp		
	3. <u>have low bp</u>		
	4high vapor pressure		
	5do NOT conduct electricity		

49. I can identify a substance as "molecular" based on its properties.	A chemist performs the s white crystalline solids, A in the table below.			
		Solid A	Solid B	
	Melting Point	High, 801°C	Low, decomposes at 186°C	
	Solubility in H ₂ O (grams per 100.0 g H ₂ O at 0°C)	35.7	3.2	
	Electrical Conductivity (in aqueous solution)	Good conductor	Nonconductor	
	 A) both solids contain or B) both solids contain or C) solid <i>A</i> contains only contains only ionic both solid <i>A</i> contains only ionic both solid <i>A</i> contains only contains only covalent Which terms describe a series point and poor electrical of the A covalent and metallic (B) covalent and molecular (B) covalent (B) cov	aly covalent bo covalent bond onds ionic bonds an at bonds ubstance that h conductivity?	onds s and solid <i>B</i> nd solid <i>B</i>	
	C) ionic and molecularD) ionic and metallic			

Unit 12: Reaction Rates & Equilibrium


If you can do all the things listed below, you are ready for the Unit 12 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything from Unit 1.	
2. I can still do everything from Unit 2.	
3. I can still do everything from Unit 3.	
4. I can still do everything from Unit 4.	
5. I can still do everything from Unit 5.	
6. I can still do everything from Unit 6.	
7. I can still do everything from Unit 7.	
8. I can still do everything from Unit 8.	
9. I can still do everything from Unit 10.	
10. I can still do everything from Unit 11.	
11. I can define effective collision and collision theory	Definition: effective collision – a collision between two reactants that have the proper orientation and sufficient energy to overcome the activation energy barrier collision theory – substances must sustain effective collisions in order for chemical reactions to occur
12. I can state and apply the relationship between temperature and reaction rate in terms of collision theory.	As the temperature <u>increases</u> , the reaction rate for most chemical reactions <u>increases</u> because there are <u>more</u> effective collisions between particles. Given the reaction: $2Mg(s) + O_2(g)> 2MgO(s)$ At which temperature would the reaction occur at the greatest rate? A) $0^{\circ}C$ B) $15^{\circ}C$ C) $95^{\circ}C$ D) 273K

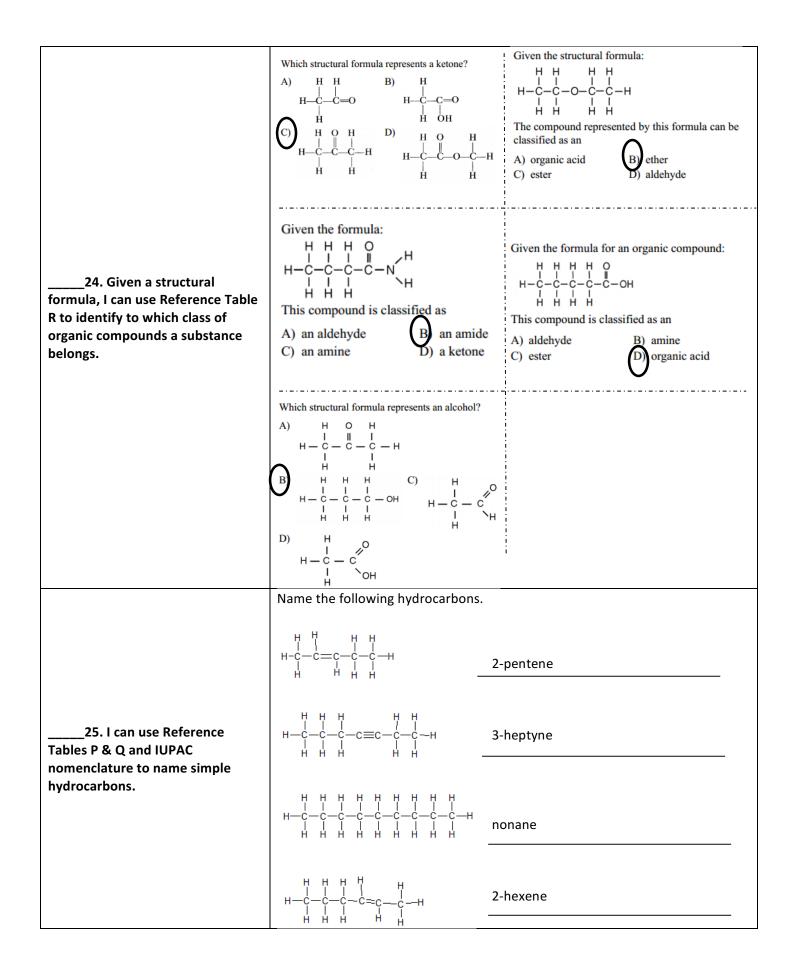
13. I can state and apply the relationship between surface area and reaction rate in terms of collision theory.	As the surface area <u>increases</u> , the reaction rate		
	<u>increases</u> because there are <u>more</u> effective collisions between particles.		
	At STP, which 4.0 g sample of $Zn(s)$ will react most quickly with dilute hydrochloric acid?		
	A) lump B) bar C) powdered D) sheet metal		
14. I can state and apply the relationship between concentration and reaction rate in terms of collision theory.	As the concentration <u>increases</u> , the reaction rate		
	<u>increases</u> because there are <u>more</u> effective collisions between particles.		
	At 20 ^o C, a reaction between powdered $Zn(s)$ and hydrochloric acid will occur most quickly if the concentration of the HCl is		
	A) 1.0 M B) 1.5 M C) 2.5 M D) 2.8 M		
15. I can state the unit used to measure energy.	Energy is measured in <u>joules</u> .		
	Given the following balanced equation:		
16. Based on the location of	$I + I> I_2 + 146.3 \text{ kJ}$		
the energy term, I can determine if the reaction is exothermic or	Is this reaction exothermic or endothermic? Justify your answer.		
endothermic.	Exo. Energy is a product.		
17. I can use Table I to	Which balanced equation represents an endothermic		
determine if a reaction is	reaction?		
exothermic or endothermic.	A) $C(s) + O_2(g) \rightarrow CO_2(g)$		
	B) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$		
	C) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$		
	D) $N_2(g) + O_2(g) \rightarrow 2NO(g)$		

19. I can define potential	Definitions:	
energy diagram, reaction	potential energy diagram – a graph that shows the changes in potential	
coordinate, PE _{reactant} , PE _{product} ,		
heat of reaction (Δ H), activation		
energy, catalyst.		
	reaction coordinate -shown on the X-axis of a potential energy diagram, it	
	indicates the reaction pathway	
	PE _{reactant} – potential energy of the reactant	
	DE notorial anomy of the unadust	
	PE _{product} – potential energy of the product	
	heat of reaction (ΔH) – potential energy of the products minus the potential	
	energy of the reactants	
	activation energy - the amount of energy that must be added to the reactants	
	to overcome the energy barrier so the reaction will happen	
	catalyst – a substance that speeds up the rate of a chemical reaction by	
	allowing it to occur via an alternate pathway that requires less energy	
	entropy –a measure of the system's disorder	
20. Given a potential energy	Give the potential energy diagram below, determine if the reaction is	
diagram, I can determine if the	exothermic or endothermic. Justify your answer.	
reaction is exothermic or		
endothermic.		
	Potential Energy	
	Pote	
	Reaction Coordinate	
	$A + D \longrightarrow G$	
	Endo. The products have more energy than the reactants.	

25. Given a balanced	Which reaction results in an increase in entropy?	
equation, I can determine if the	A) $CO_2(g) \rightarrow CO_2(s)$	
reaction results in an overall increase or decrease in entropy.	(B) $H_2O(\ell) \rightarrow H_2O(s)$	
increase of decrease in entropy.	C) $Ca(s) + 2 H_2O(\ell) \rightarrow Ca(OH)_2(aq) + H_2(g)$	
	D) NaCl(aq) + AgNO ₃ (aq) \rightarrow AgCl(s) + NaNO ₃ (aq)	
	Which equation shows an increase in entropy?	
	A) $\operatorname{CO}_2(\mathfrak{g}) \to \operatorname{CO}_2(\mathfrak{g})$	
	$ \begin{array}{c} \text{(B)} & \text{CO}_2(\ell) \to \text{CO}_2(g) \\ \text{(C)} & \text{(C)} & \text{(C)} & \text{(C)} \end{array} \end{array} $	
	$ \overrightarrow{C}) CH_{3}OH(\ell) \rightarrow CH_{3}OH(s) $	
	D) $CH_3OH(g) \rightarrow$	
	$\begin{array}{c} D \\ CH_{3}OH(\ell) \end{array}$	
	Which reaction has the greatest increase in entropy?	
	(A) $2 \operatorname{H_2O}(\ell) \rightarrow 2 \operatorname{H_2}(g) + O_2(g)$	
	B) $2 \operatorname{H_2O}(g) \rightarrow 2 \operatorname{H_2}(g) + \operatorname{O_2}(g)$	
	C) $H_2O(g) \rightarrow H_2O(\ell)$	
	D) $H_2O(\ell) \rightarrow H_2O(s)$	
26. I can define forward reaction, reverse reaction,	Definitions: forward reaction – the chemical reaction read from left to right	
reversible reaction, and closed	iorward reaction – the chemical reaction read nom left to fight	
system		
	reverse reaction – the chemical reaction read from right to left	
	reversible reaction – a chemical reaction that can proceed from both left to	
	right and right to left	
	closed system – a system in which reactants and products are trapped and	
	may not enter or leave	
27. I can state the three	The three types of equilibrium are:	
types of equilibrium.		
	<u>Phase</u> equilibrium	
	Chemical/reaction equilibrium and	
	<u>Solution</u> equilibrium	

28. I can state two conditions that apply to all systems at equilibrium.	reaction must be <u>equal</u>	of the forward and reverse and the of the reactants and products must be	
29. Given a list of reactions, I can identify reactions that show equilibrium (chemical, phase, or solution).	Which balanced equation represents phase equilibrium? A) $H_2(g) + I_2(s) <> 2HI(g)$ B) $I_2(s) <> I_2(g)$ C) $KCI(s) < \frac{H_2O}{2} KCI(aq)$ D) $2KCI(s) + 3O_2(g)> 2KCIO_3$ Which balanced equation represents solution equilibrium? A) $H_2(g) + I_2(s) <> 2HI(g)$ B) $I_2(s) <> I_2(g)$ C) $KCI(s) < \frac{H_2O}{2} KCI(aq)$ D) $2KCI(s) + 3O_2(g)> 2KCIO_3$ Which balanced equation represents chemical equilibrium? Which balanced equation represents chemical equilibrium? D) $2KCI(s) + 3O_2(g)> 2KCIO_3$ Which balanced equation represents chemical equilibrium? D) $I_2(s) <> I_2(g)$ B) $I_2(s) <> I_2(g)$ C) $KCI(s) < \frac{H_2O}{2} KCI(aq)$ D) $2KCI(s) + 3O_2(g)> 2KCIO_3$		
30. In terms of saturation, I can describe a solution that is at equilibrium.	In terms of saturation, a solution that is at equilibrium must besaturated		
31. I can state LeChatelier's Principle.	LeChatelier's Principle states when subjected to a stress, systems at equilibrium will shift to relieve the stress		
32. Given a balanced equation at equilibrium, I can predict the direction of shift in the equilibrium when the temperature, concentration, or pressure is changed or if a catalyst is added.	Given the reaction at equilibrium: $2SO_2(g) + O_2(g) <> 2SO_3(g) + 392kJ$ Predict the direction of shift in the equilibrium (right, left, no shift) when the following changes are made to the system. $\boxed{ Change } $ $\boxed{ Change } $ $\boxed{ Increase concentration of SO_2 } $ $\boxed{ Increase concentration of SO_3 } $ $\boxed{ Increase temperature } $ $\boxed{ Increase pressure } $		
	Add a catalyst	no shift	

Unit 13: Organic Chemistry


If you can do all the things listed below, you are ready for the Unit 13 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything	
from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
6. I can still do everything	
from Unit 6.	
7. I can still do everything	
from Unit 7.	
8. I can still do everything	
from Unit 8.	
9. I can still do everything	
from Unit 10.	
10. I can still do everything	
from Unit 11.	
11. I can still do everything	
from Unit 12.	
	Definitions:
	organic compound – all carbonate containing compounds except CO, CO ₂ ,
	and carbonates
	saturated hydrocarbon – a compound containing only C and H in which each
	carbon atom has 4 single bonds
	carbon atom has 4 single bonds
12. I can define organic	
compound, saturated	
hydrocarbon, unsaturated	
hydrocarbon, and isomer.	unsaturated hydrocarbon - a compound containing only C and H in which
nyurocarbon, and isomer.	there is at least one double bond (possibly triple) between C atoms
	isomer -two organic compounds that have the same molecular formula, but
	different structural formula and therefore different physical and chemical
	properties

	Draw the complete structural formula for CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ .		
13. I can expand a condensed structural formula to show the structural formula of an organic compound.	(Sorry. This will take WAAY too long on the computer.)		
	Draw the complete structural formula for $CH_3CHCHCH_3$.		
	(This one too.)		
14. I can state the name and symbol of the element that is	The element that is capable of forming rings, chains, and networks is		
capable of forming rings, chains, and networks.	carbon Its symbol isC		
	HONC1234 tells me that		
15. I can explain the meaning of and apply HONC1234.	Hydrogen forms 1 bond. Oxygen forms 2 bonds. Nitrogen forms 3 bonds. Carbon forms 4 bonds.		
	Which structural formula <i>correctly</i> represents a hydrocarbon molecule?		
	$ \begin{array}{c} A) H \\ H \\ H \\ H \\ C \\ H \\ H \\ C \\ H \\ H \\$		
16. Given the formula, I can	Which formula represents a hydrocarbon?		
determine if a compound is a hydrocarbon or not.	A) CH ₃ CH ₂ CH ₂ CHO B) CH ₃ CH ₂ CH ₂ CH ₃ C) CH ₃ CH ₂ CH ₂ COOH D) CH ₃ CH ₂ COOCH ₃		
17. Given the name, I can	Determine how many carbon atoms are in each of the following compounds:		
use Reference Table P to determine how many carbons	decane10ethene2		
atoms are in a compound.	3-nonene91-pentyne5		
18. Given the name, I can use Reference Table Q to determine to which class of hydrocarbons a compound belongs.	Determine the homologous series of hydrocarbons to which each of the following belongs:		
	decanealkane2-decenealkene		
	3-nonenealkene1-pentynealkyne		
	Determine if each of the following is a saturated or unsaturated hydrocarbon.		
19. Given the name, I can determine if the hydrocarbon is	decanesatetheneunsat		
saturated or unsaturated.	3-nonene <u>unsat</u> 1-pentyne <u>unsat</u>		

	Determine the homologous series of hydrocarbons to which each of the		
	following belongs:		
	H H H H H—C—C—C—C—H H H H H belongs to the <u>alkane</u> series.		
20. Given the formula, I can determine to which homologous series a hydrocarbon belongs.	H = H = H $H = H = H$ $H = H$ H $H = H$ H H H H H H H H H		
	H = H = H = H = H = H = H = H = H = H =		
	Determine if each of the following is a saturated or upsaturated by drasarbon		
21. Given the formula, I can determine if a hydrocarbon is saturated or unsaturated.	Determine if each of the following is a saturated or unsaturated hydrocarbon. CH ₃ CH ₂ CH ₂ CH ₃ sat		
	CH ₃ CHCHCH ₃ nsat		
	Determine the number of hydrogen atoms in each of the following.		
22.Given the name, I can use			
Reference Table Q to determine	decane221-butene8		
how many hydrogen atoms the hydrocarbon contains.	3-nonene <u>18</u> 1-pentyne <u>18</u>		
23. Given a list of compounds, I can determine which ones are isomers.	Given a formula representing a compound: $\begin{array}{c} 0 & H & H & H \\ H & -C - C - C - C - H \\ 1 & 1 & 1 \\ H & H & H \end{array}$ Which formula represents an isomer of this compound? A) H H H H O H - C - C - C - C - H I & I & I \\ H & H & H \end{array} (B) H O H H H - C - C - C - C - H I & I & I \\ H & H & H \end{array} (C) H H H O H - C - C - C - C - OH I & I & I \\ H & H & H \end{array} (D) H H O H H H + H H H D) H H O H H H + H + H H + H H + H + H H + H + H H + H H + H + H		

	Name the following organic compounds.			
26. I can use Reference Tables P & R and IUPAC nomenclature to name simple compounds in any of the classes of organic compounds.	H H H H H-C-C-C-C-H H H H H	H H O H H - I - III - I H - C C C H H H H		
	butane	butanone	butanoic acid	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} H & H & H & H & H \\ H - C & -C - C - C - C - N \\ H & H & H & H \\ H & H & H & H \\ 1 - butanamine \end{array}$	
	Н Н Н—С—С≡С—С—н Н Н			
	_2-butyne	butanal	butanamide	
	$\begin{array}{c cccccccccccc} H & H & H & H \\ I & I & I & I \\ H - C - C - C - C - C - Br \\ I & I & I \\ H & H & H \end{array}$ 1bromobutane	$\begin{array}{c} H & O & H & H \\ H - C - O - C - C - C - C - H \\ H & H & H \\ methylpropanoate \\ H \\ H \\$	$\begin{array}{cccc} H & H & H & H \\ H & C & C & C & -C & -O & -C & -H \\ H & H & H & H & H \\ \end{array}$ methylpropyl ether	
	 F stands for <u>fermentation</u>. This type of organic reaction results from a reaction of <u>a sugar</u> to form <u>carbon dioxide</u> and <u>ethanol</u>. It typically requires a catalyst, in the form of an enzyme to occur. S stands for <u>substitution</u>. This type of organic 			
	reaction happens when <u>saturated</u> hydrocarbons			
27. I can use F-SCAPES to list and describe the 7 types of organic reactions.				
	C stands for	combustion In	this type of organic	
	reaction ah	ydrocarbon	reacts with	
	<u>oxygen</u> to form <u>carbon dioxide</u> and			
	water It is an exothermic reaction.			
	A stands for	_addition In t	this type of organic reaction	
	an <u>unsatura</u>	ted hydrocarbon	becomes a	
	saturated	whe	en the double bond breaks	
	and two atoms of an	other element (often a halide		

	P stands forpolymerization	In this type of organic	
		In this type of organic	
	reaction many <u>monomers</u> are linked together to form a		
	polymer A generalized form of this reaction looks like this		
	Note: \mathbf{n} and \mathbf{n} are very large numbers equal to about 2000.		
27. I can use F-SCAPES to list and describe the 7 types of organic reactions. (continued)	$n \begin{pmatrix} H \\ H \end{pmatrix} c = c \begin{pmatrix} H \\ H \end{pmatrix}$	$\rightarrow \begin{pmatrix} H & H \\ I & I \\ -C - C - \\ I & I \\ H & H \end{pmatrix}_{n}$	
	E stands for <u>esterification</u> . In this type of organic		
	reaction an <u>alcohol</u> reacts with a		
	<u>organic acid</u> to form an <u>ester</u> and		
	water The products of this reaction are typically fragrant.		
	S stands for <u>saponification</u> . In this type of organic		
	reaction a <u>fat</u> reacts with a <u>base</u> to form		
	soap You can really "clean up" if you remember this organic		
	reaction.		
	Given the balanced equation for an organic reaction: Given the equation:		
		н н н н н н н н н н н н н н н н н н н	
	A) addition B) esterification C) fermentation D) substitution	Which type of reaction is represented by this equation?	
		A) combustion B) esterification (C) polymerization D) substitution	
	Given the equation:	U	
20 Civen on equation 1 con	$C_2H_6+Cl_2 \rightarrow C_2H_5Cl+HCl$	Given the reaction:	
28. Given an equation, I can identify the type of organic	This reaction is best described as	$H_3C \rightarrow OH + HOC_2H_5 \implies CH_3C \rightarrow O-C_2H_5 + H_2O$	
reaction that is occurring.	 A) addition involving a saturated hydrocarbon B) addition involving an unsaturated hydrocarbon 	This reaction is an example of	
	C) substitution involving a saturated hydrocarbon b) substitution involving an unsaturated hydrocarbon	A) fermentation C) hydrogenation	
		·	
	Which equation represents fermentation?	Which reaction best represents the complete combustion of ethene?	
	$(C_2H_6 + Cl_2 \rightarrow C_2H_6Cl + HCl)$		
		of ethene?	