Name: \qquad
EXTRA REVIEW: INTRODUCTION TO ACIDS AND BASES

1) Which equation illustrates $\mathrm{H}_{2} \mathrm{O}$ acting as a Bronsted-Lowry base?
A) $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}+\mathrm{H}_{2}$
B) $\left.\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq}}\right)+\mathrm{OH}^{-}(\mathrm{aq})$
C) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
D) $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}$
2) Which substance can act as an Arrhenius acid in aqueous solution?
A) HI
B) NaI
C) NH_{3}
D) LiH
3) Given the reaction:

$$
\mathrm{HX}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+X^{-}(\mathrm{aq})
$$

Based on the equation, $H X$ would be classified as
A) an acid, because it donates a proton
C) a base, because it accepts a proton
B) an acid, because it accepts a proton
D) a base, because it donates a proton
4) A student tested a 0.1 M aqueous solution and made the following observations:

- conducts electricity
- turns blue litmus to red
- reacts with $\mathrm{Zn}(s)$ to produce gas bubbles

Which compound could be the solute in this solution?
A) LiBr
B) LiOH
C) $\mathrm{CH}_{3} \mathrm{OH}$
D) HBr
5) Which formula represents a conjugate acid-base pair?
A) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$
B) $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
C) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{PO}_{4}{ }^{3-}$
D) $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{SO}_{4}{ }^{2-}$
6) Given the reaction:

$$
\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{~F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

What species is the Bronsted acid in the reverse reaction?
A) F^{-}
B) $\mathrm{H}_{2} \mathrm{O}$
C) HF
D) $\mathrm{H}_{3} \mathrm{O}^{+}$
7) In the reaction $\mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-}$, which is a conjugate acid-base pair?
A) $\mathrm{H}_{3} \mathrm{O}^{+}$and Br^{-}
B) $\mathrm{H}_{3} \mathrm{O}^{+}$and HBr
C) HBr and Br^{-}
D) HBr and $\mathrm{H}_{2} \mathrm{O}$
8) According to the Bronsted-Lowry theory, $\mathrm{H}_{2} \mathrm{O}$ is considered to be a base when it
A) accepts an electron
C) donates a proton
B) accepts a proton
D) donates an electron
9) According to the Arrhenius theory, a substance that is classified as an acid will always yield
A) $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$
B) $\mathrm{CO}_{3}{ }^{2-(a q)}$
C) $\mathrm{H}^{+}(\mathrm{aq})$
D) $\mathrm{OH}^{-}(\mathrm{aq})$
10) As HF dissolves in water, the following ionization reaction occurs:

$$
\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}
$$

In this reaction, a proton is donated to
A) HF^{-}by F^{-}
B) $\mathrm{H}_{3} \mathrm{O}^{+}$by F^{-}
C) $\mathrm{H}_{2} \mathrm{O}$ by HF
D) $\mathrm{H}_{3} \mathrm{O}^{+}$by $\mathrm{H}_{2} \mathrm{O}$
11) When an Arrhenius base is placed in $\mathrm{H}_{2} \mathrm{O}$, the only negative ion present in the solution is
A) H^{-}
B) O^{2-}
C) OH^{-}
D) $\mathrm{H}_{3} \mathrm{O}^{-}$
12) According to the Arrhenius theory, when an acid substance is dissolved in water it will produce a solution containing only one kind of positive ion. To which ion does the theory refer?
A) hydrogen
B) sodium
C) acetate
D) chloride
13) An aqueous solution of an ionic compound turns red litmus blue, conducts electricity, and reacts with an acid to form a salt and water. This compound could be
A) KNO_{3}
B) HCl
C) LiOH
D) NaI

