HC Stoichiometry, Limiting Reactant \& \% Yield

SUPPLEMENTAL PRACTICE PROBLEMS

General Stoichiometry

1. Several brands of antacid tablets use aluminum hydroxide to neutralize excess acid.

$$
\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

| $\left[\begin{array}{lll}\text { Molar masses: } & 78.01 & 36.46\end{array} 133.4\right.$ | 18.02] |
| :--- | :--- | :--- | :--- | :--- |

If 0.750 g of $\mathrm{Al}(\mathrm{OH})_{3}$ is completely reacted:
a) What mass of $\mathrm{HCl}(\mathrm{aq})$ is required?
b)What mass of water is produced?
2. The equation for one of the reactions in the process of reducing iron ore to the metal is

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\begin{array}{lllll}
{[\text { Molar masses: }} & 159.7 & 28.01 & 55.85 & 44.01]
\end{array}
$$

a) What is the maximum mass of iron, in grams, that can be obtained from 454 g of iron(III) oxide?
b) What volume of $\mathrm{CO}_{2}(\mathrm{~g})$ can be produced when 454 g of iron(III) oxide react completely?

Limiting Reactants

3. The reaction of methane and water is one way to prepare hydrogen:

\[

\]

If you begin with 995 g of CH_{4} and 2510 g of water, what is the maximum mass of H_{2} that can be produced?
4. Disulfur dichloride, $\mathrm{S}_{2} \mathrm{Cl}_{2}$, is used to vulcanize rubber. It can be made by treating molten sulfur with gaseous chlorine:

$$
\begin{array}{rrc}
\mathrm{S}_{8}(\mathrm{l})+4 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{~S}_{2} \mathrm{Cl}_{2}(\mathrm{l}) \\
\text { [Molar masses: } 256.6 & 70.91 & 135.0 \text {] }
\end{array}
$$

Starting with a mixture of 32.0 g of sulfur and 71.0 g of Cl_{2}, which is the limiting reactant? What is the maximum mass of $\mathrm{S}_{2} \mathrm{Cl}_{2}$ that can be produced?

Percent Yield

29. Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$, is a valuable compound in the synthesis of new organic compounds. One of several ways this born compound can be made is by the reaction

$$
\begin{array}{cccccc}
& 2 \mathrm{NaBH}_{4}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow & \mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+2 \mathrm{NaI}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \\
\text { [Molar masses: } & 37.84 & 253.8 & 27.67 & 149.9 & 2.02 \text {] }
\end{array}
$$

Suppose you use 1.203 g of NaBH_{4} with an excess of iodine and obtain 0.295 g of $\mathrm{B}_{2} \mathrm{H}_{6}$. What is the percent yield of $\mathrm{B}_{2} \mathrm{H}_{6}$?
31. Disulfur dichloride, which has a revolting smell, can be prepared by directly combining S_{8} and Cl_{2}, but it can also be made by the following reaction:

$$
3 \mathrm{SCl}_{2}(\mathrm{l})+4 \mathrm{NaF}(\mathrm{~s}) \rightarrow \mathrm{SF}_{4}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})+4 \mathrm{NaCl}(\mathrm{~s})
$$

$\begin{array}{llllll}{\left[\begin{array}{llll}\text { Molar masses: } & 103.0 & 41.99 & 108.1\end{array} 135.0\right.} & \text { 58.46] }\end{array}$
a) Assume you begin with 5.23 g of SCl_{2} and excess NaF . What is the theoretical yield of $\mathrm{S}_{2} \mathrm{Cl}_{2}$?
b) If only 1.19 g of $\mathrm{S}_{2} \mathrm{Cl}_{2}$ is obtained, what is the percent yield of the compound?

