1) How much heat is required to completely melt 75.0 g of ice at 273 K ?

$$
\begin{array}{ll}
Q=m H_{f} & x=(75.0 \mathrm{~g})(334 \mathrm{~J} / \mathrm{g}) \\
& X=25050 \mathrm{~J} \rightarrow 25100 \mathrm{~J}
\end{array}
$$

2) How much heat is required to completely vaporize a 65.4 g sample of liquid water is initially at $86.6^{\circ} \mathrm{C}$ to steam at $100 .{ }^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& Q=m C \Delta T \quad \text { and } \quad Q=m H_{v} \\
& (65.4)(4.18)(13.4)+\quad(65.4)(2260) \\
& 3663.1848+\quad 147804=151467.18 \rightarrow 151000 \mathrm{~J}
\end{aligned}
$$

3) An unknown substance has a heat of vaporization of $3500 \mathrm{~J} / \mathrm{g}$. If a sample of that substance requires 85670 J to vaporize completely, what is the mass of the sample?

$$
\begin{array}{ll}
Q=m H_{v} \quad & 85670 \mathrm{~J}=(x)(3500 \mathrm{~J} / \mathrm{g}) \\
& X=24.477 \rightarrow 24 \mathrm{~g}
\end{array}
$$

4) How much heat is released when 9.54 g of water cools from $78.9^{\circ} \mathrm{C}$ to $34.8^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& Q=m C \Delta T \\
& X=(9.54 \mathrm{~g})(4.18 \mathrm{~J} / \mathrm{g} C)\left(-44.1^{\circ} \mathrm{C}\right) \\
& X=1758.58 \rightarrow 1760 \mathrm{~J}
\end{aligned}
$$

5) How much heat is required to completely melt 12.5 g of ice at $0.0^{\circ} \mathrm{C}$ to liquid water at $18.5^{\circ} \mathrm{C}$?

$$
\begin{array}{lll}
Q=m H_{f} & \text { and } & Q=m C \Delta T \\
(12.5)(334) & + & (12.5)(4.18)(18.5) \\
4175 & + & 966.625=5141.625 \rightarrow 5100 \mathrm{~J}
\end{array}
$$

