Properties of acids

- Sour taste
- Electrolytes
- Cause acid-base indicators to change color (table M)
- Blue litmus turns red
- React with bases to produce water and a salt
- React with metals to produce hydrogen gas
(Table J: exceptions Cu, CU, and AG)
Properties of bases
- Bitter taste
- Slippery
- Electrolytes
- React with acids to produce water and a salt
- Cause acid base indicators to change color

Acid Nomenclature

- Acids always begins with "H"
- If two elements (H and another element)
- You must use hydro- "stem"- ic acid
- If three or more elements ($\mathrm{H}+$ polyatomic ion)
- You don't use "hydro", just change the ending to the polyatomic ion and acid
- If ending is -ate then change to -ic acid
- If ending is -ite then change to -ous acid

Definitions of acid

- Arrhenius:
- Properties of acids are based on properties of hydrogen ion or hydronium ion
- Acids produce $\mathrm{H}+$ ions while bases produce OH - ions
- Bronsted-Lowery
- Changed Arrhenius' definition to make more broad
- Acids donate $\mathrm{H}+$ ions while bases accept $\mathrm{H}+$
- Not all bases contain -OH ending so be careful
- NH_{3} is a base
- C-OH are alcohols not bases
- - COOH are organic acids not bases
pH scale
- Below 7 is acidic, above 7 is basic, 7 is neutral
- Each change in a single pH is a ten-fold change
- $\quad[\mathrm{H}+]+[\mathrm{OH}-]=14$, so if you goes up the other goes down
- $\mathrm{pH}=$ molarity, raise 10 by the negative $\mathrm{pH}: 10^{\mathrm{pH}}$
pH testing and indicators
- litmus paper (blue "basic", red acidic)
- pH paper
- phenolthalein $=$ clear \rightarrow pink means basic
- Table M lists other with ranges

Strong Vs Weak Acids and Bases

- Strong acids completely dissociate in water
- Weak acids do not completely dissociate in water
- Strong bases and weak bases act in the same manner

Acid reaction with metals

- Table J: only metals above hydrogen will react with acid to produce hydrogen gas
- Acid + metal \rightarrow hydrogen gas $\left(\mathrm{H}_{2}\right)+$ salt (metal-nonmetal)
- Single replacement reactions

Neutralization reactions

- Acid + base \rightarrow water + salt
- Double replacement reactions
- $\quad[\mathrm{H}+]$ ions $=[\mathrm{OH}-]$ ions

Titration

- When a known acid or base solution is used to figure out an unknown acid or base solution
- Add a measured amount of an acid or base of known concentration to an unknown acid or base to use formula $\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$
- There should always be a 1:1 ratios between $[\mathrm{H}+]$ ions and [OH-]
- Reference table formula
- Molarity $=$ moles $/$ liters
- Moles of substance $=$ given mass/gram formula mass
- Moles of $[\mathrm{H}+]=$ number of H's in compound X moles of acid

Acids	Base
$\mathrm{H}+$	OH-
Proton donor	Proton acceptor
pH 0 up to 7 (not equal to 7)	Great than 7
H+ nonmetal	Metal +OH, be careful not all end in OH
a.k.a. hydronium $\mathrm{H}_{3} \mathrm{O}$	a.k.a. alkaline

